
Department of Information Engineering and Computer Science

Master’s Degree in
Computer Science

Final Dissertation

reCluster
A resource-aware Kubernetes architecture for heterogeneous clusters

Supervisor Student
Maurizio Marchese Carlo Corradini

Co-Supervisor 223811
Lorenzo Angeli

Academic year 2021/2022

Acknowledgements

Firstly, I want to express my deepest gratitude to Dr. Lorenzo Angeli, who followed me during my
internship and thesis writing, as well as Professor Maurizio Marchese, who oversaw it.

Thanks to all members of the Laboratory of Critical Technologies (CRIT).

A special thanks to my parents and my family for their constant support and encouragement to
always pursue my dreams and passions.

Finally, I want to thank my friends who have shared my joys and concerns and have always been
there for me.

Contents

Abstract 1

1 Introduction 2

1.1 Context . 2

1.2 Goals . 3

1.3 Principles . 4

1.3.1 Sustainability . 4

1.3.2 Acknowledging Planetary Limits . 5

1.3.3 Hardware Reusability . 5

1.3.4 Energy Reduction . 6

1.3.5 Insourcing . 7

1.3.6 Interoperability . 8

1.3.7 Free/Libre And Open Source Software . 9

1.3.8 Dependencies Reduction . 9

2 Architecture 10

2.1 Components . 11

2.1.1 Node . 11

2.1.1.1 Worker . 11

2.1.1.2 Controller . 11

2.1.2 Server . 12

2.1.3 Database . 13

2.1.4 Registry . 14

2.1.5 Cluster Autoscaler . 15

2.1.6 Load Balancer . 16

2.1.6.1 Example Schema . 17

2.2 Network . 18

2.2.1 External Network . 18

2.2.2 Internal Network . 18

2.2.3 K8s Network . 19

2.3 reCluster . 21

3 Implementation 23

3.1 Distributions . 23

3.1.1 Packages . 24

3.1.2 Init System . 26

3.1.2.1 OpenRC . 28

3.1.2.2 systemd . 28

3.1.3 ISO Image . 29

3.1.3.1 Alpine Linux . 30

3.1.3.2 Arch Linux . 31

3.2 Dependencies . 32

3.2.1 Air-Gap Environment . 32

I

3.2.2 PostgreSQL . 34

3.2.3 K3s . 34

3.2.3.1 Enhancements . 34

3.2.3.2 Architecture . 35

3.2.3.3 The Choice . 36

3.2.4 Node Exporter . 37

3.2.4.1 Collectors . 37

3.2.4.2 Installer . 38

3.2.4.3 Graphics Processing Unit metrics . 38

3.2.5 Docker Registry . 38

3.2.5.1 Image Naming . 39

3.2.5.2 Hostname To IP Address Mapping . 39

3.2.5.3 Image Storage . 40

3.2.6 MetalLB . 41

3.2.6.1 LoadBalancer Service Type . 41

3.2.6.2 Address Allocation . 41

3.2.6.3 External Announcement . 42

3.2.7 Prometheus . 43

3.2.7.1 Features . 44

3.2.7.2 Grafana . 45

3.2.8 Management . 45

3.2.8.1 Configuration . 45

3.2.8.2 Script . 47

3.3 Server . 48

3.3.1 Database . 49

3.3.1.1 Object-Relational Mapping . 49

3.3.1.2 Schema . 51

3.3.1.3 User . 53

3.3.1.4 Node . 55

3.3.1.5 Cpu . 59

3.3.1.6 Storage . 63

3.3.1.7 Interface . 64

3.3.1.8 Status . 67

3.3.1.9 Node Pool . 73

3.3.2 GraphQL API . 75

3.3.2.1 Queries . 77

3.3.2.2 Mutations . 79

3.3.3 Upscaling . 81

3.3.4 Downscaling . 83

3.3.5 Monitoring . 85

3.3.6 Configuration . 87

3.4 Autoscaling . 88

3.4.1 Vertical Pod Autoscaler . 89

3.4.2 Horizontal Pod Autoscaler . 90

3.4.3 Cluster Autoscaler . 90

3.4.3.1 Cloud Provider . 91

3.4.3.2 Upscaling . 91

3.4.3.3 Downscaling . 92

3.4.3.4 Configuration . 94

3.5 Installer . 95

3.5.1 Benchmarks . 96

3.5.2 Power Consumption . 96

3.5.3 Installation Procedure . 96

II

3.5.4 Configuration Parameters . 98
3.5.5 Configuration Files . 100

3.5.5.1 K3s . 100
3.5.5.2 K8s . 101
3.5.5.3 Node exporter . 104
3.5.5.4 reCluster . 104
3.5.5.5 SSH . 105

4 Conclusions 106
4.1 Limitations And Future Work . 107
4.2 Closing Remarks . 111

Bibliography 111

A Corollary Projects 114
A.1 Node Exporter Installer . 114

A.1.1 Configuration . 114
A.1.2 Example . 115

A.1.2.1 Basic . 115
A.1.2.2 Advanced . 115

A.2 Inline . 116
A.2.1 Features . 116
A.2.2 Configuration . 117
A.2.3 Example . 118

A.3 GraphQL Auth Directive . 118
A.3.1 Configuration . 119
A.3.2 Type Definition . 121
A.3.3 Example . 122

B Good Practices 123
B.1 DevOps . 123
B.2 Continuous Practices . 124

B.2.1 Continuous Integration . 124
B.2.2 Continuous Delivery . 125
B.2.3 Continuous Deployment . 125

B.3 Bundle . 125
B.3.1 Configuration . 125
B.3.2 Script . 127

C Logging 129
C.1 Levels . 129

III

Abstract
Many large-scale computing clusters employed to host online services are mainly concerned with max-
imizing overall performance and responsiveness, with the energy impact being considered only for
cost savings, while overall sustainability is mostly marginal. Additionally, commercial data centers
are largely homogeneous relying on modern and cutting-edge hardware components. If we want data
centers to become more sustainable, we have to rethink their architecture and include awareness of
the energy and resources involved. In this work, a possible solution for integrating and making sus-
tainability as essential as performance and responsiveness in data centers is proposed. As a direct
consequence, this new cluster architecture must preserve as much of the previous architecture’s us-
ability and overall requirements as possible, while also being more aware of the various resources and
minimizing its energy consumption.

This thesis presents a case study of a possible heterogeneous data center architecture that is
more resource-aware, and generally sustainable. We guide the reader through the design process,
starting from guiding principles, progressing through theory and, finally, implementation and critical
reflections.

We open the thesis by outlining the context, goals, and core principles around which the cluster
is established. A dynamic and somewhat abstract context that is far from static and should adap-
t/transform to the needs and requirements of the organization managing the cluster. A set of goals
aimed at making the cluster appear less heterogeneous and more like a single, homogeneous entity.
A collection of core principles that enhances and provides a basis for improved sustainability, while
minimizing waste as much as possible: Sustainability, Acknowledging Planetary Limits, Hardware
Reusability, Energy Reduction, Insourcing, Interoperability, Free/Libre And Open Source Software,
and Dependencies Reduction.

After the foundations, we depicts the theoretical architecture, which defines a high-level overview
of the whole cluster. This is a collection of all the involved hardware and software components, along
with their respective responsibilities outlining how they manage and maintain the cluster continuously
and with an awareness of energy and resources. To communicate, the components must be connected,
providing a network that enables workload orchestration and cluster management.

As the core point of the thesis, we detailed how we implemented a prototype heterogeneous cluster
that integrates the core principles with the theorized networks and components. We named it reClus-
ter, and the prefix ”re” refers to the Right to Repair movement’s ”reduce, reuse, repair, recycle”
slogan. Among the most notable reCluster components are the Server, which is a completely new
implementation developed from the ground up, and the Cluster Autoscaler, which is a reimplemen-
tation that allows its core to communicate with the Server and vice versa. Combining Server and
Cluster Autoscaler allows the cluster architecture to perform autoscaling procedures like upscaling
and downscaling automatically. Moreover, we developed a script that automates all of the necessary
installation, configuration, and deployment procedures. The prototype provides a totally autonomous,
resource-aware, and sustainable cluster by employing only those resources that are strictly necessary,
preferring those that are more sustainable than others.

The initial reCluster concept was theorized in [4], where I contributed to the Kubernetes analysis
and the conceptualization of the various algorithms, which were eventually implemented in the pro-
totype.

Adapting what is already available and specifically developed for large and energy-hungry data
centers to a more sustainable and resource-aware architecture while preserving the same original
computing industry requirements is not only possible, but also necessary for a more sustainable future.

1

1 Introduction
The purpose of this chapter is to provide an overview of the context, goals, and core principles that
serve as foundations for the overall cluster architecture, both theoretical and implemented.
These so-called foundations are not restricted to this project and/or environment, but can be con-
sidered as the minimum requirements and principles to obtain a greener, energy and resource-aware
software in general that is not only for the present, but also, and must be, for the future, because
we, as the overall ICT community, have mostly ignored them in the past without giving them the
appropriate weight.

reCluster is heterogeneous because it is composed of numerous and diverse components, ranging
from computers to networking equipment, that have been reutilized after decommissioning. The
fundamental goal of reCluster is to establish a cluster (hence the name) without reinventing the
wheel, but rather to increase reusability by transforming and adapting heterogeneous hardware and
software components designed for similar environments, enhancing the overall reduction of both energy
consumption and resources involved without compromising overall performance, responsiveness, and
ease of use.

1.1 Context
Most existing systems rely entirely on large data centers, which are excessively energy-hungry and
do not provide any resource awareness owing to virtualization/abstraction layers. Furthermore, the
servers are maintained permanently powered on to significantly minimize the time necessary for pro-
visioning client instances while achieving virtually 100% uptime123.
To achieve a greater degree of sustainability, the time necessary for provisioning must be rebalanced,
allowing servers to be completely powered off while maintaining a similar level of uptime. It should be
highlighted that this is ideal for many applications that may be classified as non-critical, while critical
applications, such as emergency response and payment systems, require ”five nines” or 99.999% or
around five minutes and 15 seconds of downtime per year4.

Radovanović et al., in [24], describe Google’s Carbon-Intelligent Compute Management system,
which actively reduces electricity-based carbon footprint and power infrastructure costs by deferring
temporally flexible workloads. It uses a collection of analytical pipelines to acquire the next day’s
carbon intensity projections, train day-ahead demand prediction models, and apply risk-aware opti-
mization to generate the next day’s carbon-aware capacity for all Google data centers. The system
limits the resources available to temporally flexible workloads on an hourly basis while preserving
overall daily capacity, allowing all such workloads to be completed within a day.
This type of computing solution only accounts for services and processes that can be delayed, not those
that must be continually active with an acceptable response time; sending a critical email that is only
delivered the following day is unacceptable. It is only compatible with Google’s data centers and does
not provide a more interoperable solution that is compatible with other data centers. Moreover, the
code is closed source, which means it does not adhere to the FLOSS philosophy. Nevertheless, the
notion of deferring non-real-time operations, employing analysis and projections, to be rescheduled
when the system is underutilized, improving overall sustainability and lowering the costs, should be
considered.

Enes et al., in [12], present a platform that manages a power budget to limit the amount of energy
spent by users, applications, and individual container instances. The energy constraint is accomplished

1https://aws.amazon.com/it/compute/sla
2https://azure.microsoft.com/support/legal/sla
3https://cloud.google.com/compute/sla
4https://aws.amazon.com/blogs/publicsector/achieving-five-nines-cloud-justice-public-safety

2

https://aws.amazon.com/it/compute/sla
https://azure.microsoft.com/support/legal/sla
https://cloud.google.com/compute/sla
https://aws.amazon.com/blogs/publicsector/achieving-five-nines-cloud-justice-public-safety

by the platform’s capability to monitor container energy consumption and dynamically modify its CPU
and memory resources via Vertical Scaling as necessary (see section 3.4.1).
This approach is much more high-level and directly autoscale the resources allocated to containers
based on the power allocation among users and applications, as opposed to a low-level approach that
involves physically terminating/bootstrapping the server (used by reCluster). Moreover, the energy is
viewed as a precious resource that can be split and shared, improving the container system’s overall
awareness of its resources. Nevertheless, it needs to be combined with additional approaches to achieve
high and low levels of energy awareness and reduction.

Paya and Marinescu, in [21], presented an energy-aware operation model for load balancing and
application scaling on a cloud, outlining an energy-optimal operation regime and aiming to increase
the number of servers employed in this regime. Servers that are idle or only barely loaded are put into
one of the sleep modes to conserve energy. Therefore, the following could be employed to reformulate
the conventional idea of load balancing in a large-scale system: ”Distribute evenly the workload to the
smallest set of servers operating at optimal or near-optimal energy levels, while observing the Service
Level Agreement (SLA) between the Cloud Service Provider (CSP) and a cloud user. An optimal
energy level is one when the performance per Watt of power is maximized”.
To reduce energy waste, this approach can be applied to an external load balancer employed in the
architecture. Even more, energy can be saved by completely turning off mostly inactive or lightly-
loaded servers rather than switching them into sleep mode. This new type of load balancer can also be
interfaced with the Cluster Autoscaler and Server to better understand the overall cluster state, both
in terms of active/inactive nodes and also of overall power consumption, to obtain more fine-grained
information and therefore increase the overall efficiency.

All of the above strategies attempt to minimize energy consumption in various contexts: non-
real-time services, containerization, and load balancing. Yet, none of them address, or only partially
address, the core cause of the highest energy usage in a cluster architecture, which is the server
themselves. To establish a more sustainable and resource-aware cluster, the servers must be considered
and therefore autoscaled by physically bootstrapping or terminating them; since a powered-off machine
consumes (nearly) zero energy.
Nonetheless, the prior techniques should, and must, be extended into future versions of reCluster to
achieve even higher levels of energy reduction while satisfying the SLA.
More than ever, a more sustainable cluster architecture is required.

1.2 Goals
A cluster is composed of several components, including hardware and software, that operate together
as a single entity to accomplish one homogeneous goal, or multiple and different goals. The hardware
components, which are typically computers of different kinds ranging from desktop computers to sin-
gle board computers, are connected in a single network: the cluster network, by additional hardware
components particularly designed for communication. Because multiple applications can achieve the
same result, are constantly evolving with newer features and capabilities, and can be employed or
not depending on the (current) needs and requirements, the software components can vary and are as
heterogeneous as the hardware, if not more. Between hardware and software, two major distinctions
complement one another. The first distinction is that hardware, particularly reconditioned hardware,
is limited in its ability to be modified and transformed, whereas software is essentially limitless in
this regard and may achieve the same goal using multiple technologies and/or languages. The second
distinction is that there is no difference between the various hardware components in terms of whether
they are used for cluster operations or user operations. Instead, software components can be divided
into low-level ones that are used to keep the overall cluster operational and high-level ones that are
used by the users for their specific services. In this context, software in all of its aspects must be used
to compensate for the shortcomings of the hardware since it can be customized to fill the gaps where
the hardware lacks.
Most used hardware components may be reconditioned by reusing decommissioned components from
consumers and organizations due to upgrades. Because newer components are often more performant
and energy-efficient than older ones, the hardware is directly and automatically managed by the var-

3

ious cluster-related software deployed.
The cluster must be as simple as possible, with human interaction minimized to nearly zero, and
automatic solutions preferred. The most essential automated solution that must be implemented in a
cluster is autoscaling, both upscaling and downscaling. In upscaling, the cluster automatically boot-
straps an inactive hardware component. Whereas in downscaling, the cluster automatically terminates
an active hardware component. Selecting which component(s) to autoscale can follow multiple crite-
ria, such as choosing nodes that are more power efficient or performant, or even a combination of the
two. The latter is an excellent illustration of the combination of hardware and software that needs to
be present in the cluster.
The cluster should be used in a wide range of environments and use-case scenarios, from a modest
and local deployment at home to a large and remote deployment comparable to that found in a data
center. Given that the various software manages them automatically using the autoscaling technique,
there should be no limit to the number of involved computers.
If there is no need to operate the cluster for specific periods and it is therefore considered worthless,
it can be completely shut down, with the benefit of reducing its overall power consumption to zero.
When it is necessary again, it is reactivated. Although the latter may create some performance and/or
responsiveness issues, because no physical machines are managing any service, it is far preferable to an
always-on technique. The latter impacts can be mitigated if the organization can calculate different
models and/or employs a single board computer as the always-on hardware component thanks to its
overall extremely low power consumption. As stated previously, the context is dynamic, and hence
the latter is dependent on the organization in charge of the cluster.

As a result, the cluster should appear less heterogeneous and more like a homogenous, and mostly
automated entity.

1.3 Principles
This section is dedicated to illustrating some of the fundamental principles around which the overall
design is based. These principles should be seen as the foundations for a more sustainable, resource-
aware, free and open-source, and energy-efficient architecture that may be utilized not only in this
specific context, but in all aspects of ICT.
It should be highlighted that these principles should not be regarded as negative to overall perfor-
mance and responsiveness, but rather as equally important. Performance and responsiveness currently
constitute the sole and most significant characteristics to consider when examining software, but in
the future, it should be necessary, almost mandatory, to include, maybe gradually but starting to
consider them as parameters for comparisons and essential aspects of a program.
The applicability of these principles is determined by the organization’s requirements. Yet, some of
these principles should be investigated and implemented in the future for greener and more resource-
aware software.
The proposed list can undoubtedly be improved upon and/or expanded with additional, and possibly
more strict, principles. Shifting the computing industry toward a more sustainable future should be
possible, if not essential.

1.3.1 Sustainability

Source: https://www.un

.org/sustainabledevelo

pment/news/communicati

ons-material

The United Nations (UN) has established 17 Sustainable Development Goals5

(SDGs). The SDGs address climate change and strive to preserve the oceans
and forests, while also addressing poverty and other deprivations via initiatives
that improve health and education, reduce inequality, and stimulate economic
growth.
Clearly, in an ICT context, several of these Goals may appear to be out-of-
context, unreachable/unfeasible, or not directly related. However, the majority
of them, including those that are not directly related to an ICT context, must
be considered when developing new software applications and architectures;
given that a minor improvement in a single SDG can benefit all other SDGs.

5https://sdgs.un.org

4

https://www.un.org/sustainabledevelopment/news/communications-material
https://www.un.org/sustainabledevelopment/news/communications-material
https://www.un.org/sustainabledevelopment/news/communications-material
https://www.un.org/sustainabledevelopment/news/communications-material
https://sdgs.un.org

There is no need to change or entirely disrupt a project’s primary goal, but
rather to integrate the relevance of these long-term goals into the development process. If an ICT
initiative improves or enhances one or more SDGs, it will undoubtedly benefit not only other direct
and associated SDGs, but practically every other SDG as well.
A large end goal is nearly always comprised of a plethora of many smaller improvements/objectives
that, when considered separately, may appear to be irrelevant, but when placed together form a
sustainable chain of progress.

1.3.2 Acknowledging Planetary Limits

Icon made by Freepik from
www.flaticon.com

When available resources are limited, it is essential to preserve them and reduce
their overall consumption as much as possible. It is important to note that the
term resources in this context is more generalized and does not designate any
specific resource type, but they may be regarded as a distinct entity that groups
them.
Rethink and change the availability of resources, and investigate a more realistic

and conservative approach, referred to in [18] as computing within limits or simply LIMITS. LIMITS
incorporates three major topics: present and near-future ecological, material, and energy constraints;
new forms of computing that may assist promote well-being while living within these limits; and
the influence of these limits on the area of computing. Not only is the concept of LIMITS confined
within a computing environment, but it also aims to integrate other, and sometimes uncorrelated,
heterogeneous areas. Moreover, because resources are not exclusively available to individuals, there is
a need to think about and focus on collectives and larger contexts engaging in stronger connections to
sustainable activities in disciplines other than computing. The term resource(s) should be considered
not just to describe actual elements, but also to encompass socioeconomic, more intangible, factors
that may be enhanced by diverse techniques pursued by the computing community, such as promoting
development rather than economic growth.
As stated in [26], the incorrect underlying assumptions of endless, infinite, and replicable technological
resources must be reconsidered. These assumptions are just unsuitable for a more constrained and
sustainable future. To re-imagine how digital technologies may be developed and implemented in these
new and limited computing architectures, new concepts of radically leaner and ecologically conscious
techniques are necessary.
Another element of the architecture’s involved resources is the relationship between the software and
the hardware. Because of the current amount of processing power, some software has ridiculously high
hardware requirements for even the most simple operations. Better and more performant programming
languages and algorithms need to be employed to rethink, modify, and/or improve software resource
requirements. A different technique is necessary with the adoption of a more permacultural approach,
which is referred to as permacomputing in a computing environment. Permacomputing, as depicted
in [23], is both a concept and a community of practice centered on issues of resilience and regenerative
in digital technology, transforming problems into solutions, competition into cooperation, and waste
into resources.
Transform what appears to be a disadvantage, a difficulty, or even a waste into a rich and valuable
resource.

1.3.3 Hardware Reusability

Icon made by Freepik from
www.flaticon.com

Use reusability and repairability approaches to reduce resource waste as much
as possible.
The majority of unused hardware is perfectly capable of fulfilling the majority
of tasks and operations in sustainable architecture, such as hosting a website or
a cache server, without any particular difficulty. Unused hardware is frequently
created by an upgrade to a newer and more recent version or by (major) sched-
uled decommissioning.
Typical electronic devices with even a single faulty hardware component are
discarded and promptly replaced with newer hardware, even if the remaining

components are healthy and completely functional. The expenses and work required for a repair vary

5

https://www.flaticon.com/authors/freepik
http://www.flaticon.com
https://www.flaticon.com/authors/freepik
http://www.flaticon.com

depending on the device, but most of the time the repair may be performed quickly and cheaply by
replacing the faulty component with a new one. Furthermore, and this is especially true for desktop
computers, if two devices are compatible and one has some broken components that the other does
not, the healthy components can be combined to re-create a single but healthy and usable device with
the benefit of drastically reducing the overall amount of resource waste.
The latter two approaches not only recycle abandoned technology but also reduce the overall quantity
of electronic waste (e-waste) that they can generate. Consequently, the energy gap between overall
utilization energy and production energy, formerly expressed as embodied energy, can be narrowed or
even attained and exceeded.
Yet, the ease and feasibility of a device’s repairability is entirely dependent on its manufacturer. More-
over, there are cases where the devices have a planned obsolescence after which some of the components
will probably break and the cost or effort required for a repair is unfeasible, and it is far easier to
buy a new one while discarding the old and broken one, causing additional (e-)waste. It is difficult to
avoid the latter, and almost certainly additional issues, induced by the manufacturer. Yet, in recent
years, there have been an increasing number of consumer activities aimed at reducing or eliminating
the behaviors perpetuated by these manufacturers. The Right To Repair67 movement is the most
well-known, to advocate for repair-friendly policies, regulations, statutes, and standards. Another
approach is to provide a repairability index, such as the French repair index8, for the products so that
potential customers may know and understand how easy it is to repair the corresponding device before
purchase. It should be noted that not all manufacturers are opposed to repairability, and there are
certain, albeit small, manufacturers, such as Framework9, that have repairability as one of their core
missions, building longevity products and improving the overall availability of spare parts and ease of
upgrade, customization, and repairability. The objective/hope is that more manufacturers will begin
to design, produce, and distribute more sustainable products.
Instead of planned obsolescence, consider planned longevity.

1.3.4 Energy Reduction

Icon made by Freepik from
www.flaticon.com

The architectures and software should strive to reduce their total energy foot-
print as much as possible while providing similar, if not identical, outcomes.
Concerning the preceding point, this is only possible if the organization has
complete control over all aspects of the architecture, since the union of soft-
ware and hardware is the only conceivable and feasible strategy to establishing
a more sustainable and energy-aware architecture.
Energy is one of the most significant factors in achieving sustainable architec-
ture. Because energy is closely related to carbon emissions, there is a need for
low-carbon and sustainable computing with a path towards zero-carbon com-

puting, as stated in [30], because current computing emissions account for about 2% of global emissions
and are expected to rise dramatically in the upcoming years. This rate of expansion is unsustainable
and as a community, we must begin to regard computational resources as finite and valuable, to be
used only as essential and as effectively as possible. The latter is known as frugal computing, and
it strives to get the same outcomes while using less energy by being more frugal with the available
computing resources. In the current context, for example, if a system/computer in a cluster is not
needed or is underutilized, it is a waste of both energy and resources. It must be terminated and,
if any services are deployed on it, migrated to another active system to avoid service interruptions,
increasing its utilization and lowering the architecture’s total power consumption while maintaining
the same level of Quality of Service (QoS). Humans are unable to perform these operations since
there is the need to continuously monitor and check the overall status of the entire architecture. The
core principles of energy reduction must be developed into automatic systems that could be easily
extended to existing applications and tools which are focused solely on overall system performance
and responsiveness. The system should be as efficient as possible, employing only those components

6https://www.repair.org
7https://repair.eu
8https://www.ecologie.gouv.fr/indice-reparabilite
9https://frame.work

6

https://www.flaticon.com/authors/freepik
http://www.flaticon.com
https://www.repair.org
https://repair.eu
https://www.ecologie.gouv.fr/indice-reparabilite
https://frame.work

that are strictly necessary, avoiding bootstrapping unneeded machines and terminating those that are
unnecessary, and avoiding the paradigm of an always-on architecture that wastes energy and resources.
Another factor to consider is the embodied energy of each hardware system. Embodied energy is the
energy necessary to build all of the electronic components (both network and especially consumer
appliances). It emerges that the energy used to manufacture electronic components is significantly
higher, and in many cases dominant, than the energy needed throughout their whole operation[9].
This means that practically every hardware component is underutilized in terms of the energy re-
quired for manufacturing it. As a result, there is a need to correct this imbalance by attempting to
reach at least the same amount of energy. It should be noted that the latter does not want to employ
the hardware unconsciously, but rather with better and more conscious principles and logic that not
only tries to reduce the overall ”live” energy consumption, but also tries to equal, if not even surpass,
the embodied energy of each electronic device that is employed in the architecture.
Previously, the term carbon emission/footprint was used concerning energy consumption. Yet, it is
necessary to accurately define how the overall energy of the architecture is estimated, as well as the
fundamental principles on which the calculation is based. This is not as simple as it appears. [20] reveal
that quantifying the carbon footprint has produced contradictory results, implying the need for differ-
ent and alternative approaches that delineate the specific relationships between elements - geographic,
technical, and social - within the broader information and communication technologies infrastructure.
The common method of assessing the energy impacts is the kilowatt hours of electricity and gigabytes
of data through a network, expressed as the functional unit KWh/GB. The KWh/subscriber metric,
which divides the larger energy draw inside a study’s system boundary by the number of subscribers
within the network, can better represent worldwide patterns in network access expansion over time.
Rather than calculating KWh/GB or KWh/subscriber, a relational approach would assess the carbon,
water, and land footprints of powering the whole architecture in specific regions of the world, high-
lighting the significant disparities between the various locations. Network shapes, rather than scales,
provide new possibilities for assessing the existing and future Internet[20].

1.3.5 Insourcing

Icon made by kerismaker
from www.flaticon.com

Invert the trend of constantly outsourcing applications to third-party cloud
providers; we might express this with a neologism: ”Insourcing”.
While there are undeniable benefits to outsourcing in terms of convenience and
better pricing, it erodes institutional and human independence by centralizing
a single point of failure and delegating relevant choices regarding privacy, data
ownership, and environmental impact on these external actors[4].
There is a need to obtain, direct control over the whole software stack, beginning
with the hardware infrastructure and progressing through the application’s de-
velopment and final release. At first look, reversing the ICT outsourcing trend

may appear to be impracticable, unneeded, and comparable to an old and mostly outdated approach.
Nonetheless, overall technology, tools, and usability have significantly improved in recent years. Most
importantly, there has been a shift in the software community toward standardization and interop-
erability across heterogeneous systems, which has not only made deploying software locally and with
an in-house infrastructure trivial, but has also aided in abstracting away from the final user common
and not-so-trivial problems, such as handling and coordinating multiple connections across different
hardware and software components/layers.
As discussed in [28] current infrastructures and approaches to climate change are mitigation-oriented,
aiming only to support or investigate social changes that reduce the material causes of the more per-
nicious facets of global change, with the implicit assumption that these infrastructures will persist
as the risks of current unsustainable practices become urgent threats to well-being and survival. In-
stead, new architectures, and possibly old ones through refactoring and rethinking the overall design,
must take and address new approaches, denoted as post-apocalyptic computing, to address the many,
dramatic, and complex phenomena associated with global change, allowing to prepare for nonlinear
changes. If the organization has direct control over almost every aspect of the architecture, the latter
can be accomplished with almost negligible effort, whereas if everything is outsourced to an external
entity, the organization has only a limited amount of control over the possible future outcomes that

7

https://www.flaticon.com/authors/kerismaker
http://www.flaticon.com

can arise from unpredictable changes that will occur sooner or later. As a result, avoid remote and
generally unknown architectures of third-party organizations that only raise the fragile state on which
the application is deployed, establishing an inherent single point of failure that not only can be an
issue for the present but, more significantly, for the future.
Another significant aspect of current architectures and approaches is that most operations are per-
formed remotely and outsourced to external organizations, even though the participating entities are
mostly close together, resulting in extra workload and networking equipment, which translates to an
increased amount of overall power consumption. In this regard, the usage of external videoconfer-
encing applications that enable remote entities to connect is a significant example. When two close
entities, that can be even in the same building, seek to establish a teleconference, their data is routed
to remote videoconferencing servers. Instead of depending on an external and remote service, it is
possible to set up a local videoconferencing service in the local (insourced) architecture, employing
open-source software and improving overall security and privacy. The distance between the entities
and the local server instance may be drastically reduced, decreasing latency and lowering total power
consumption for the videoconference, as theorized in [19], resulting in better outcomes and more sus-
tainable service.
Lastly, insourcing enables better fine-grained and conscious control over the whole application’s data
and everything that comes with it, such as privacy and security, because it is known where and how
it is stored, distributed, and protected. Even though these later elements are not the primary focus
of this document, they should not be ignored or underestimated because they are essential for almost
every software application. Furthermore, various initiatives in recent years have attempted to improve
data protection for individuals and organizations, including the well-known General Data Protection
Regulation10 (GDPR) drafted and passed by the European Union (EU).
As a result, returning to an insourcing approach and having direct control over almost every aspect of
the architecture and software stack is not only feasible and almost trivial nowadays, but also necessary
for establishing a better and more sustainable future for everybody, not just the individual.

1.3.6 Interoperability

Icon made by Freepik from
www.flaticon.com

Interoperability and standardization of hardware and software must be at the
core of a more sustainable architecture. Most, if not all, of the components,
employed in the design must agree on common interfaces to prevent the need
for hardware adapters and software translation layers, which not only increase
resource waste and energy consumption but also decrease overall system per-
formance.
When all of the applications employed by the architecture agree on or adapt
to a common set of interfaces, achieving software interoperability is virtually
straightforward. Upgrading previously incompatible software is feasible, albeit

depending on the complexity of the program, refactoring may be required. Fortunately, most software
programs and, more broadly, the computing environment depends on standards that are equivalent
in practically every part of the world. Consider the Internet itself, which is built on standards and
interoperability between all sorts of heterogeneous components.
On the other hand, implementing hardware interoperability and standardization is considerably more
challenging than software since it is heavily dependent on design decisions made by the manufacturer
throughout the development phases. As a result, there is a need to persuade, mostly through legisla-
tion, the many manufacturers that are reluctant to adapt and do not meet or do not want to establish
a set of standards that improve interoperability on their devices. A perfect example of the latter is
the European Parliament’s approval of a law, following an impact assessment study11, that mandates
by the end of 2024 a common, standardized, and interoperable charger for all mobile devices sold in
the EU internal market12. The latter has been highly awaited, and it may be regarded as a first step
toward a much broader trend of standardization and interoperability that can establish the foundation

10https://gdpr.eu
11https://data.europa.eu/doi/10.2873/528465
12https://www.europarl.europa.eu/news/en/press-room/20220930IPR41928/long-awaited-common-charger-for

-mobile-devices-will-be-a-reality-in-2024

8

https://www.flaticon.com/authors/freepik
http://www.flaticon.com
https://gdpr.eu
https://data.europa.eu/doi/10.2873/528465
https://www.europarl.europa.eu/news/en/press-room/20220930IPR41928/long-awaited-common-charger-for-mobile-devices-will-be-a-reality-in-2024
https://www.europarl.europa.eu/news/en/press-room/20220930IPR41928/long-awaited-common-charger-for-mobile-devices-will-be-a-reality-in-2024

for a more sustainable future.
Furthermore, they can significantly reduce the effort required while also increasing the ease of estab-
lishing an insourcing architecture. Various organizations can exploit a uniform and de-facto standard
that enables high-level interoperability between heterogeneous architectures, accelerating the process
of migrating various services and deployments from remote to local architectures.
Lastly, having an interoperable architecture, combining software and hardware, eliminates the so-
called technology vendor lock-in effect, in which a customer is dependent on a single manufacturer.
Because the entire architecture might be composed of reconditioned/refurbished hardware and thus
is intrinsically heterogeneous, the vendor lock-in effect cannot be tolerated.

1.3.7 Free/Libre And Open Source Software

Source: https://openso

urce.org/logo-usage-g

uidelines

The software developed and employed in the architecture must be Free/Libre
and Open Source in all aspects. If a software application is incompatible with
the latter, an alternative must be identified or developed.
Following the GNU Project’s philosophy13: Free Software means that users have
the four essential freedoms: (0) to run the program, (1) to study and change
the program in source code form, (2) to redistribute exact copies, and (3) to
distribute modified versions.
This principle’s fundamental is presented as Free/Libre and Open Source Soft-
ware14 (FLOSS).
Being FLOSS-compatible has also the significant advantage of allowing external

programmers to contribute to the software, consequently improving overall quality and providing for
more performant and efficient logic and algorithms.

1.3.8 Dependencies Reduction

Icon made by Freepik from
www.flaticon.com

For decades, as stated in [8], discussion about software reuse was more
widespread than real software reuse. Nowadays, the situation is reversed, with
developers reusing software produced by others regularly in the form of software
dependencies, and the situation is largely unexamined. Software dependencies
pose substantial risks that are all too often ignored. The transition to easy,
fine-grained software reuse has occurred so quickly that there is little knowl-
edge of the best practices for identifying and using dependencies effectively, or
even determining when they are appropriate and when they are not. Installing
a package as a dependency outsources the effort of developing that code —

designing, writing, testing, debugging, and maintaining — to someone else on the Internet that is
mostly unknown. Using that code exposes the program to all of the problems and weaknesses in the
dependency. Therefore, if a dependency appears to be too problematic and there is no easy or effective
procedure to isolate it, the best solution may be to avoid it totally, or at least the parts that have
been recognized as the most dangerous.
The latter is essential to acquiring a critical perspective on the dependencies used in the overall ar-
chitecture. There is a need to evaluate the real and unreplaceable dependencies and avoid those that
are unnecessary and too critical to be adopted by the architecture. Thinking about future design
with a more LIMITS, post-apocalyptic, and mostly resource-aware perspective should begin from the
foundation. Lowering and simplifying the software stack’s core and external dependencies significantly
minimizes the time required to maintain and deploy it.

13https://www.gnu.org/philosophy
14https://www.gnu.org/philosophy/floss-and-foss.html

9

https://opensource.org/logo-usage-guidelines
https://opensource.org/logo-usage-guidelines
https://opensource.org/logo-usage-guidelines
https://www.flaticon.com/authors/freepik
http://www.flaticon.com
https://www.gnu.org/philosophy
https://www.gnu.org/philosophy/floss-and-foss.html

2 Architecture
This chapter is dedicated to displaying and describing the numerous components, their relationships,
and the general needs for the cluster architecture’s composition.
Understanding how the cluster works lays a good foundation for the following chapters, in which al-
most everything seen here is extensively explained in terms of how it was developed and why certain
decisions were taken. Furthermore, the design is dynamic and may be modified to include more or
fewer components and/or requirements to better meet the requirements of the end user.
To prevent resource waste at the cost of a little decreased service interruption, the overall design is
structured around a high availability model rather than a fault tolerance approach. Fault tolerance
is based on specialized hardware that detects a hardware fault and switches to a redundant hard-
ware component immediately. Although the transition seems to be seamless and provides continuous
service, a significant price is paid in terms of both power consumption and performance since the
redundant components do no processing but are constantly operational. More crucially, the fault-
tolerant paradigm ignores software errors, which are by far the most prevalent cause of downtime.
High availability, on the other hand, considers availability to be a collection of system-wide, shared
resources that cooperate to ensure essential services, rather than a series of replicated physical com-
ponents. When a system, component, or application fails, high availability combines software and
hardware to minimize downtime by quickly restoring essential services. While not instantaneous, ser-
vices are generally restored in less than a minute[14].
Section 2.3 depicts a real-world functioning example of the cluster design given. It has been extensively
tested and is continuously operational 24 hours a day, hosting a variety of services. Furthermore, it
upscales or downscales automatically dependent on demand or requirements.
The diagram below illustrates the architecture, encompassing its components and how they are inter-
connected, as well as a potential connection to an external network.

ROUTERSWITCH

. . .

. . .

WORKER 0 WORKER 1 WORKER n

CONTROLLER 0 CONTROLLER 1 CONTROLLER n

K8s
Agent

K8s
Agent

K8s
Agent

K8s
Server

K8s
Server

K8s
Server

SERVERDATABASE

REGISTRY

CLUSTER
AUTOSCALER

LOAD
BALANCER

Metrics
Server

Metrics
Server

Metrics
Server

Metrics
Server

Metrics
Server

Metrics
Server

Linux Linux Linux

Linux Linux Linux

External Network
Internal Network

K8s Network

Figure 2.1: Architecture overview

10

2.1 Components

2.1.1 Node

A node is a physical computer that runs the GNU/Linux12 and constantly executes software that is
specific to the cluster’s composition.
Each node is physically connected to the other nodes via Ethernet and to the many operating services/-
components through a virtual network. Section 2.2 goes into further detail about cluster networking.
A node can be in one of two states. The active state indicates that a node is turned on and is
actively contributing to the cluster. The inactive state, on the other hand, shows that a node has
been turned off and is no longer actively contributing to the cluster. This does not imply that the
node is worthless and will never be utilized again, but simply that it is no longer required for the
current cluster demand. A node state can be changed manually by switching the power button on or
off, or automatically through the Cluster Autoscaler component, which monitors the current cluster
state. More details about Cluster Autoscaler may be found in section 2.1.5.
Two core services are continuously operating on each node. The first service is a Kubernetes-compliant
distribution. Kubernetes3, also known as K8s, is an open-source solution for automating containerized
application deployment, scaling, and administration. The second service, Metrics Server, is a server
that constantly monitors the node, exposing hardware and operating system metrics.
Finally, each node is conceptually divided into two types depending on its role in the cluster: Worker
nodes and Controller nodes. These are discussed in the sections that follow.

2.1.1.1 Worker

WORKER

K8s
Agent

Metrics
Server

Linux

A worker node is designed to handle only deployable units of computation and
services that are not critical components of the cluster. It is not in charge of
scheduling the work over several nodes; rather, it only accepts it from a cluster-
available authenticated and authorized controller node.
Even though a worker node executes the effectively scheduled workload in the
cluster, it is not considered a critical component of it. At any given time, the
total number of active workers might be zero. That is, there is no scheduled
workload, and previously worker nodes have been shut down automatically to

prevent precious resource waste that is no longer required.
The majority of the cluster’s accessible machines are worker nodes. This raises the overall amount of
schedulable workload as well as heterogeneity. Heterogeneity is helpful because it may help schedule
workloads to nodes with the bare minimum of requested resources, preventing waste. Assume that
the total number of active nodes in the cluster are zero and there are two inactive worker nodes.
The first node has 4 GiB of memory and consumes 100W of power, whereas the second node has 8
GiB of memory and consumes 150W of power. A workload using around 3GiB of memory is then
planned for the cluster. Because it decreases resource waste, notably memory waste, the first worker
node will be chosen. It is important to note that if both nodes have an equal amount of memory, the
conclusion remains the same since it has the lowest power consumption.

2.1.1.2 Controller

CONTROLLER

K8s
Server

Metrics
Server

Linux

A controller node is an essential component of the cluster, acting as a coordi-
nator between the active worker nodes and the overall workload in the cluster.
It continually monitors the cluster’s state in terms of available nodes, how and
where the workload should be scheduled, and much more. A consistent and se-
cure API must be provided for administration and end-users who wish to deploy
custom services in the cluster. The API can be made available to an external
network if it is available and appropriately configured, allowing remote control
and improving overall usage.

To ensure the integrity and management of a cluster, at least one controller node must be constantly
available. It is strongly suggested to have multiple controller nodes that meet the high availability

1https://www.gnu.org
2https://kernel.org
3https://kubernetes.io

11

https://www.gnu.org
https://kernel.org
https://kubernetes.io

model to withstand potential system, component, or application failures. This is possible considering
an odd number of controller nodes (i.e. three) that are always active. A quorum of controller nodes
is required for a cluster to agree on cluster state updates. Quorum4 in a cluster with n controllers
is (n / 2) + 1. Adding one node to any odd-sized controller group will always increase the number
of nodes required for a quorum. Although adding a node to an odd-sized controller group appears
to improve fault tolerance since there are more machines, it worsens it because the same number of
nodes can crash without losing quorum but there are more nodes that can fail. If the cluster cannot
withstand any more failures, adding a node before removing nodes is dangerous because if the new
controller node fails to register, the cluster quorum would be permanently lost. The latter is not a
strict necessity, but rather a preferable practice, even though it may slightly increase total resource
waste. Consider this: if the only available controller node encounters a software or hardware failure
and becomes unavailable, the entire cluster becomes unreachable and unusable.
To further decrease overall resource waste, a controller can also become a worker at the same time.
If the overall workload in the cluster is very low and non-zero, having one worker and one controller
active with minimal utilization at the same time is a waste. A single machine can perform the same
task, saving precious resources. If the entire demand grows later and the sole active node becomes
overloaded, the cluster reverts to its previous state. This is a configuration that may be enabled or
disabled based on the management needs of the cluster.
It should be noted that the total number of active or inactive nodes in the cluster is not limited.
However, a large number of nodes increases the workload on controller nodes, which must maintain
the cluster state updated and synchronized. As a result, as shown in table 2.1 (extracted from the
official K3s documentation5), their number and hardware requirements must be carefully balanced.

Deployment Size Nodes CPU Cores RAM Memory

Small ~10 2 4 GiB

Medium ~100 4 8 GiB

Large ~250 8 16 GiB

X-Large ~500 16 32 GiB

XX-Large 500+ 32 64 GiB

Table 2.1: Controller node requirements based on cluster size

2.1.2 Server

SERVER

A server handles all cluster nodes, user authentication and authorization, and
much more. It does not directly monitor the workload in the same way as
a controller node does, but it does serve as a low-level middleware controller.
Every action is made because of human intervention (e.g., administrators) or
another component of the cluster that has much higher-level knowledge of the
current state and reacts appropriately.
It is both an essential and a non-essential component of the cluster. It is essential
in the sense that it is aware of all registered nodes, both active and inactive, and

understands how to switch them on and off automatically. It reduces resource waste by automatically
increasing or decreasing the number of nodes in the cluster when used in conjunction with the Cluster
Autoscaler component (see section 2.1.5). Without prior information, no component in the cluster can
operate as an oracle about the nodes, leaving the Cluster Autoscaler worthless and increasing total
resource waste. It is also deemed non-essential in the sense that, while decreasing resource waste is
the overall architecture’s goal, there is no requirement for a high availability model as in controller
nodes. If a server instance crashes and does not restart, leaving no more servers in the cluster, the
entire cluster continues to function normally. However, unless failures, human interaction, or server
restarts, the number of active nodes remains constant, potentially increasing resource waste.
A server instance does not have to run on a dedicated node. A node can hold numerous components

4https://etcd.io/docs/latest/faq/#why-an-odd-number-of-cluster-members
5https://docs.k3s.io/installation/requirements#large-clusters

12

https://etcd.io/docs/latest/faq/#why-an-odd-number-of-cluster-members
https://docs.k3s.io/installation/requirements#large-clusters

at the same time, as previously mentioned. A node may be a server, a controller, and a worker all
at the same time, drastically decreasing resource waste. It is crucial to note, however, that a server
should not be executed on a worker node since, as previously explained, the total number of active
workers might be zero, terminating the server instance and the capability of automatically adjusting
the cluster size.
The server provides an API to facilitate cluster administration. Furthermore, as previously said, it is
in charge of user authentication and authorization. Unharmful queries (providing information about
active nodes or listing non-sensible information about a user) should not require any authentication
or only a minimal one. Queries that mutate the state of the cluster or display sensitive information
(turning on or off a node or displaying sensitive user information) must be protected by a high-security
mechanism.
A heartbeat daemon must be implemented on the server to continuously check the condition of a node
and detect any problems. A heartbeat6 is a periodic signal or message created by hardware or software
that is sent between devices at regular intervals. If the endpoint does not receive a heartbeat for an
extended period, often many heartbeat intervals, the machine that should have sent the heartbeat
is assumed to have failed. The latter is commonly implemented by controller nodes since they must
constantly monitor and acquire information about active nodes for workload scheduling. As a result,
a server can use the controller’s API to eliminate duplication, increase consistency and availability,
and simplify implementation.
For more information, section 3.3 covers in detail how the Server component is implemented.

2.1.3 Database

DATABASE

The database component is strictly related to the server component. Its primary
function is to store all cluster-related data in a safe, persistent and fault-tolerant
system. The data in question is generally static and does not change frequently.
Static data includes all node-related information, such as CPU type and RAM
quantity, that is hardly modified after the node is added to the cluster. However,
some data, like information regarding the current node state and its last heart-
beat, are intrinsically dynamic in the sense that the system regularly changes
them to ensure integrity. Like the server component, is seen as both necessary

and non-essential. A server is worthless without the database, resulting in the same outcome as pre-
viously explained.
This component is seen as the union of numerous modules that form it rather than as a single entity.
A database7, in general, is a structured collection of information or data that is persistently stored in
a computer system. A database management system (DBMS) is a software program that acts as an
interface between the database and its end users or applications, allowing for the retrieval, updating,
and administration of how information is structured and optimized. A DBMS also facilitates database
supervision and control by providing several administrative operations such as performance monitor-
ing, tuning, and backup and recovery. The latter indicates that each module and feature is dependent
on the implementation. Only for the database itself, there are several distinct types, and for each
type, there are numerous distributions with varying features and capabilities. To better follow the
overall design criteria, the ultimate decision on which one to take must be carefully examined.
Persistency and fault tolerance are strongly related, most importantly, in the data layer. Even if an
error occurs, the only vital and critical component that must be preserved and not lost is all the
stored data. Data persistency8 is the preservation of data after the program that produced it has been
terminated. To do this, the data must be written to non-volatile storage, a type of memory that can
maintain the information indefinitely even if the program is no longer functioning. Fault tolerance,
which differs slightly from the previous definition, refers to a non-volatile storage system’s capacity to
recover from an error or faulty condition, most typically an irreversible hardware failure of some type,
without losing any previously stored data. Disk fault tolerance is often achieved by disk management

6https://wikipedia.org/wiki/Heartbeat_(computing)
7https://www.oracle.com/database/what-is-database
8https://www.mongodb.com/databases/data-persistence

13

https://wikipedia.org/wiki/Heartbeat_(computing)
https://www.oracle.com/database/what-is-database
https://www.mongodb.com/databases/data-persistence

technologies such as mirroring9, data striping10, duplexing11, and Redundant Array of Independent
(or Inexpensive) Disks (RAID)12[13]. Consider the possibility that the database component has a
hardware failure and ceases to operate. The damage has compromised not just the replaceable hard-
ware (such as the CPU, motherboard, and RAM), but also some (but not all) storage devices storing
the cluster’s data. Typically, all data is irreversibly lost, and the cluster must be rebuilt from scratch.
However, with a correctly designed disk management system, once the faulty hardware is replaced, all
data is automatically recovered and the cluster becomes functional again. The process of rebuilding
the data might take a significant amount of time (i.e. calculating the parity bit13).
Finally, an optional cache middleware can be implemented between the server and database, enhanc-
ing read speed for frequently requested but rarely updated data and reducing disk utilization. The
cached data is stored in the main volatile memory.

2.1.4 Registry

REGISTRY

The registry component is a private container registry that the K8s orchestrator
uses in the cluster to download a specific image or collection of images. A con-
tainer registry is a stateless, highly scalable server-side application that stores
and distributes container-based application images14.
A registry is regarded as a non-essential component because the whole sys-
tem may function without it. If an internet connection is available and one of
the numerous public container registries (such as Docker Hub15) is accessible,
the cluster downloads and runs the requested image from the external network.

Having a private register in the cluster, on the other hand, may solve a plethora of potential difficulties.
Some of them are as follows:

• The K8s orchestrator fails to download the requested images in an Air-Gapped environment
when there is no internet connection (see section 3.2.1). As a result, the entire cluster is nearly
unusable. The only realistic approach is to make a local duplicate of the remote images for each
cluster node. This is hard to accomplish and prone to errors. Furthermore, there is a waste of
disk memory, but it also ignores how and where the images are downloaded.

• A local solution is required for an organization that wants complete control over its images
and is unwilling to put them on an external service. Furthermore, if the organization takes a
security-first approach, a properly configured private registry can improve overall security.

• A newly developed image that must be evaluated before beginning release to production. More-
over, the registry may be used to improve DevOps techniques by preventing potential bugs,
security vulnerabilities, and other difficulties that can arise in a real-world environment. At-
tachment B goes into much depth about DevOps.

• An image created exclusively for the cluster. Uploading it to a public registry is not only pointless
due to incompatibility, but it also limits the available namespace because an image name must
be unique.

• Registry as a pull-through cache16. If multiple cluster nodes require the same external image
and it does not exist locally, each of them fetches it from the specified registry. This results
in excessive and inefficient network utilization, which might congest the cluster. The private
registry can act as a registry mirror, locally caching each externally requested image. Every
node points directly to the private registry address. If an image cannot be located locally, the

9https://wikipedia.org/wiki/Disk_mirroring
10https://wikipedia.org/wiki/Data_striping
11https://www.pcmag.com/encyclopedia/term/disk-duplexing
12https://wikipedia.org/wiki/RAID
13https://wikipedia.org/wiki/Parity_bit
14https://docs.docker.com/registry
15https://hub.docker.com
16https://docs.docker.com/registry/recipes/mirror

14

https://wikipedia.org/wiki/Disk_mirroring
https://wikipedia.org/wiki/Data_striping
https://www.pcmag.com/encyclopedia/term/disk-duplexing
https://wikipedia.org/wiki/RAID
https://wikipedia.org/wiki/Parity_bit
https://docs.docker.com/registry
https://hub.docker.com
https://docs.docker.com/registry/recipes/mirror

request is routed to the local registry, which downloads and caches it. When a node requests the
same image again, the registry provides the cached image without needing any further network
traffic.

In practice, the registry is used to distribute the Cluster Autoscaler image (see 2.1.5) that is
specifically built to function with reCluster.
Even though it is supported out of the box, the component does not need to be instantiated on
a specific physical node; rather, it is deployed directly in the K8s environment. The registry may
be accessible from both inside and outside the K8s network, thanks to a correctly configured Load
Balancer component (further information in section 2.1.6) that exposes the service to a non-K8s-
related external network. Exposing the K8s service is critical for conveniently allowing the upload
(push) and download (pull) of an image without the user requiring any extra settings. The approach
must remain the same as when utilizing a publicly accessible registry, but with the cluster’s registry
address provided. Because the registry is externally accessible, it must be properly configured to
improve overall security. HTTPS, which enables secure communication over a cryptographic channel,
and authentication, which permits access only to a limited group of authenticated users, must be set
up and/or implemented.
The registry is deployed in the K8s environment, but the K8s orchestrator needs it to fetch the
required images, leading to a circular dependence. To avoid the latter, the registry image should be
made available on each node, eliminating the need for a registry request.

2.1.5 Cluster Autoscaler

CLUSTER
AUTOSCALER

The Cluster Autoscaler17 component is a program that automatically adjusts
the number of nodes in the cluster to guarantee that all deployed services have
a location to execute and no nodes are underutilized. It is not in charge of node
behavior and registration in the cluster; it only determines if a node should be
turned on or off, but not how. As a result, for low-level control, it must rely on
the Server component. Nonetheless, the autoscaler is an essential component of
the cluster due to its automation, which eliminates the need for human inter-
action and dramatically lowers resource waste.

The Cluster Autoscaler is deployed in the K8s environment rather than on a separate node. After
the registry becomes available, the container image of the Cluster Autoscaler is uploaded and made
available to the whole cluster during the initialization phase. Because the registry is defined as a
critical K8s service, it may be scheduled on any node, both workers and controllers. Since the cluster
may scale to zero workers, this applies to every critical component in the K8s environment, preventing
a service outage. Furthermore, the cluster autoscaler must be maintained operational at all times: if
a crash or error happens, it must be restarted. The latter is accomplished automatically by the K8s
system, removing the need for a custom solution.
The component has both a high-level and a low-level view of the cluster. The high-level view is accom-
plished by continuously monitoring the cluster’s condition to ensure its integrity: workload and active
nodes. As a result, it is aware of whether there are services that cannot be deployed owing to a lack
of resources, or if there are underutilized active nodes for the present demand, resulting in resource
waste. This is accomplished by directly querying the protected API provided by the controller nodes.
Far from it, the low-level view is obtained by continually updating a local cache that contains all of
the available nodes in the cluster, both active and inactive, to know how many nodes are available
and their status. As a result, it is aware of the nodes that can be turned on or off, as well as if the
system can be scaled up or down. As previously stated, the latter is accomplished by accessing the
server on a series of secured API endpoints that provide direct control over how the cluster’s nodes
are handled.
The prerequisites and solutions for automatically adjusting the cluster size are outlined below:

• There are some computing units (pods) that are unable to operate in the cluster owing to a lack
of resources.

17https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

15

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

If the cluster’s current total workload with the present number of active nodes has reached its
maximum, it will be unable to support further service deployments. This indicates that newly
deployed services are never executed and are always in a state of waiting. In this condition,
the controllers continue to monitor the cluster’s condition for a suitable node with enough free
resources to host a waiting service. Waiting forever for a current active node to free up some
resources affects the cluster’s overall usability and quality of service (QoS). The solution is to
check if there is a suitable inactive node in the local cache that can be turned on. If such a
node is identified, a specific request is issued to the server, and the queued deployments are
automatically scheduled to the newly bootstrapped node.

• Some nodes are constantly unneeded for an extended period. When a node’s resource utilization
is low and all of its scheduled deployments can be transferred to another node, it is no longer
required.
There is a waste of resources if the current workload on a node falls below a pre-defined thresh-
old for a certain period. To avoid this, all deployments on the node must be rescheduled to
another node with sufficient free resources, raising its overall utilization. Following completion
of the latter, the unneeded node has almost zero workloads (non-zero since there may be system
deployments running that do not require a migration and may be deleted) and can be switched
off and removed. The Cluster Autoscaler makes a specific request to the server with the node
identifier; the server removes the node from the K8s environment and subsequently shuts it off
altogether. When a node is successfully shut down, its status changes from active to inactive,
indicating that it is a candidate for an eventual upscaling.

2.1.6 Load Balancer

LOAD
BALANCER

The Load Balancer18 component provides an externally accessible IP address
to an internal K8s application. It may be seen as an abstract mechanism of
exposing the application as a network service without requiring an unfamiliar
service discovery mechanism.
An application can be composed of multiple replicas that are generated and de-
stroyed to maintain the cluster in the desired state. The replicas can be spread
over many active nodes, improving overall performance, availability, and fault
tolerance. When an application is created in a K8s environment, there is no

way to connect from outside the cluster by default. As a result, only other K8s deployments can com-
municate with it. A load balancer acts as a solution by routing external network traffic to the cluster
node where a replica of the application is deployed. To prevent scenarios where some replicas are
overloaded and others are not, it does allow different network traffic policies (such as Round-robin19,
random, and others) to homogeneously distribute traffic across all replicas. As a result, it serves as a
consistent and fixed entry point for connecting to the potentially numerous application replicas that
are intrinsically dynamic due to their non-permanent resources (i.e., internal IP address).
At first, considering the architecture schema, it is unclear if it is an essential or non-essential compo-
nent. Its utilization, however, is tightly associated with the kind and usage of deployed applications/-
components in the cluster. For example, if the cluster is intended to host numerous web applications
that must be accessed over the internet, a load balancer component is necessary to expose each ap-
plication to external network traffic. If the cluster is just used for testing or DevOps techniques (see
attachment B), there is no need to expose any applications, leaving the load balancer components
unnecessary. As a result, it can be removed, increasing the total available resources.
In data centers operated by huge cloud providers like Microsoft20, Google21, or Amazon22, a load
balancer is generally an external, sophisticated, and highly specialized component that is specifically
designed to be compatible with the specific cloud provider. The general architecture in question, how-

18https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
19https://wikipedia.org/wiki/Round-robin_item_allocation
20https://azure.microsoft.com
21https://cloud.google.com
22https://aws.amazon.com

16

https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://wikipedia.org/wiki/Round-robin_item_allocation
https://azure.microsoft.com
https://cloud.google.com
https://aws.amazon.com

ever, is far simpler and operates on bare-metal servers. A bare-metal server23 is a physical computer
that is exclusively operated by one customer or tenant. As a result, an external load balancer may
be substituted with an internal one that is deployed directly in the K8s environment. An internal
load balancer minimizes overall resource usage while also improving maintainability. Furthermore, as
with the registry and Cluster Autoscaler components, the internal load balancer is kept automatically
operational and in good working condition at all times by the K8s orchestrator.

2.1.6.1 Example Schema

Figure 2.2 depicts an example schema of an Internal Load Balancer in a cluster architecture. It
is worth noting that the Internal Load Balancer component is presented externally to the nodes to
simplify the overall overview but in reality, it is deployed directly on each active node.

NODE

SERVICE
A

SERVICE
B

SERVICE
C

B CA
NODE

B CA
NODE

B CA

LOAD BALANCER

K8s Network

Internal Network

External Network

Figure 2.2: Internal Load Balancer schema example

There are three active nodes and one Internal Load Balancer in the cluster. The nodes’ roles have
not been specified, however as stated in section 2.1.1, each node can be regarded as both a Controller
and a Worker. Three applications, A, B, and C, have been deployed in the K8s environment, with three
replicas available for each. Concerning the other replicas, each replica is scheduled on a distinct node.
The organization in charge of the cluster wishes to expose each application by assigning each one a
unique externally accessible IP address from the Internal Network (i.e., a private IPv4 address). It
should be noted that the process of mapping/routing an IP address from the Internal Network to an IP
address from the External Network is not mentioned. The Load Balancer creates a matching internal
service for each application that knows where all the replicas are installed and how to efficiently
distribute traffic among them. Assume that application A is assigned the IP address 10.0.0.97 and
that the Load Balancer receives an external request from a client on the Internal Network. The Load
Balancer examines the target address and finds a match; the request is then routed to internal service
A. Service A then redirects the request to one of the active nodes where a replica of application A is
deployed. Finally, the replica handles the request, and a response is created and sent back to the
client.

23https://wikipedia.org/wiki/Bare-metal_server

17

https://wikipedia.org/wiki/Bare-metal_server

2.2 Network
The cluster is composed of several network layers, each of which may interact with components of
the same layer but by default, not with components of a different layer. Each network layer is
heterogeneous: various software/hardware components and applications correlate to different network
layers. The cluster can support communications across layers, but this must be done transparently
and accurately to avoid significantly increasing the cluster’s complexity and resource waste while
lowering its overall security. Both software and hardware components that reside between the two
communicating levels enable inter-layer communication. The most fundamental requirement for the
latter to work is that there be no potential conflicts between the two communicating layers.
Some network layers of the cluster can be directly compared with ISO/OSI model’s layers, depending
on the requirements and capabilities.
There are three distinct network layers in the cluster architecture seen in figure 2.1. They are covered
in the sections that follow, starting with the most external network and progressing to the most
internal network in relation to the cluster.

2.2.1 External Network

External
Network

The external network is any network that does not directly connect to the
cluster. It denotes any network that is incompatible with the Internal Network
(see the section 2.2.2) and requires a Router or other similar components to
communicate with the latter. To put it simply, the External Network is any
existing network in the world that is not the Internal Network, ergo the Internet:
the network of networks.
The External Network is analogous to Layer 3 of the ISO/OSI communication
model, defined as the Network Layer, which is in charge of facilitating data

transfer between two networks.
If the deployed applications may be accessible by external clients and there is a requirement for external
resources, such as public container images, that are not locally available in the cluster, connectivity to
the external network is required. Furthermore, if the organization in charge of the overall architecture
wishes to have remote control and monitoring of the cluster from anywhere in the world, the only
current practical and supported solution is an internet connection. If the latter is not required, the
external network can be omitted from the cluster design, resulting in an Air-Gap environment without
internet access. As a result, all required resources and components are already available locally, and
access to the cluster is restricted to the internal network.
Finally, an External Network is inherently insecure. As a result, high-security protocols, methods,
and procedures must be created and effectively set to avoid any possible disservices. Although cluster
security should be implemented, it is not currently the primary focus, and only some basic procedures
are used as it is such a broad and complicated topic.

2.2.2 Internal Network

Internal
Network

The Internal Network uses one or more layer 2 network switches to connect
each physical node in the cluster. Simply described, the Internal Network is pri-
marily direct device-to-device communication with no interaction with external
networks. Another switch, router, or computer might be considered a device.
Because the Internal Network is usually composed of two or more linked devices
and is located in a limited geographic area, it is classified as a LAN (Local Area
Network).
The Internal Network is analogous to Layer 2 of the ISO/OSI communication

model, defined as the Data Link Layer, which allows data to be sent between two devices on the same
network.
Because of the network design at Layer 2, communication between internal devices in a LAN is based
on MAC addresses rather than IP addresses, which are utilized at Layer 3. As a result, network
switches forward data based on the destination MAC address. A MAC address (Media Access Control
address) is a unique sequence of 12 hexadecimal digits permanently stored in the Network Interface
Controller (NIC) that typically encodes the manufacturer’s registered identification number. A device

18

can have multiple NICs, each with its own unique MAC address. One key difference between IP ad-
dresses and MAC addresses is the former is assigned dynamically to each device and may change over
time, whereas the latter are assigned permanently. This distinction is critical since the device’s MAC
address may be used to uniquely identify a device in the same network and automatically bootstrap it.
The latter is known as Wake-on-LAN (WoL) and is employed by the server component in the cluster.
Chapter 3 contains further information regarding automatic cluster upscaling.
A router device is required if the Internal Network wants to communicate with other networks to access
various resources or execute external operations. As a result, the router (Layer 3) is directly linked to
a switch (Layer 2), which connects every node in the cluster. The latter link between the two layers
is regarded as the boundary between the secure Internal Network and the insecure External Network.
Furthermore, the total number of switch and/or router devices in the architecture is not predeter-
mined and can be increased to improve overall cluster network performance and fault tolerance. If
an external connection is not required, the whole design is reduced and made up of solely L2 network
switches, eliminating the requirement for routers. Without them, a considerable amount of resource
waste is reduced, not just in terms of pure hardware that can be reutilized as worker nodes, but also
in terms of overall cluster power consumption, because a network switch is more power-efficient than
a router[2].
Finally, a local domain name may be used to conveniently identify nodes in the Internal Network with
a hostname (i.e., recluster.local)[11]. As a result, instead of an IP address or MAC address, a
Worker node may be recognized with the hostname worker.recluster.local and a controller node
with the hostname controller.recluster.local.

2.2.3 K8s Network

K8s
Network

”Kubernetes is all about sharing machines between applications”24

Premise: the purpose of this section is not to demonstrate how Kubernetes
networking works or how it can be set and configured. Kubernetes networking
is a vast and complex topic that necessitates a high degree of competence in a
variety of fields. Furthermore, it is always evolving, providing new features and
supporting newer technology. As a result, this section only contains fundamental
and essential information regarding Kubernetes networking that is considered

at its core and will not change in future releases.

The Kubernetes orchestrator networking is represented by K8s Network. It is a virtual network,
as opposed to the Internal and External networks, in the sense that there are no physical connections
between the various K8s components, only logical ones. The communication between the various
K8s components is coordinated and distributed over all active nodes. Unless properly configured via
a particular K8s Service, in the cluster architecture represented by the Load Balancer component,
by default the various deployed containers in the K8s environment are not allowed to communicate
outside the K8s network.
In contrast to the previous two network layers, K8s Network does not map to a single layer of the
ISO/OSI communication model. Instead, it covers numerous ISO/OSI layers, starting from the Data
Link Layer (Layer 2) up to the Application Layer (Layer 7), which is the highest.
K8s Network is regarded as an overlay network. An overlay network is a network that is established on
top of a physical network that already exists. Because the overlay creates the virtual network through
encapsulation, it relies on the so-called underlay network for fundamental networking functions such
as routing and forwarding. Most overlay networks are created in the ISO/OSI communication model’s
Application Layer (Layer 7) on top of the TCP/IP networking suite. Overlay technologies can also
be utilized to overcome some of the underlay constraints while also providing additional routing
and forwarding capabilities without modifying the physical networking infrastructure. An overlay
network’s nodes, represented as K8s instances, are linked together by logical connections that can
span numerous physical links. A connection between two overlay nodes may require multiple hops in
the underlying network. In the underlying network, a link between two overlay nodes may require

24https://kubernetes.io/docs/concepts/cluster-administration/networking

19

https://kubernetes.io/docs/concepts/cluster-administration/networking

multiple hops. Figure 2.3 compares the physical network to the virtual K8s overlay network that is
created on top of it. Take note of the overall network simplicity and the lack of connection hops
between each K8s instance.

Physical Network
NODE

B CA

NODE

B CA

NODE

B CA

ROUTERSWITCH SWITCH

SWITCH

SWITCH

B CA

K8s Overlay Network

B CA

B CA

Figure 2.3: Comparison between the Physical Network and the virtual K8s Overlay Network

The Kubernetes networking stack, and, more generally, the Kubernetes ecosystem, is built fol-
lowing a set of standards and specifications. This is critical for two main reasons. It imposes an
overall rigorous structure and design that must adhere to the standard’s specifications, no more, no
less. Finally, before a standard specification can be amended or introduced to the K8s ecosystem, it
must go through a sequence of interactions and discussions involving various parties, spanning from
Kubernetes developers to single users. As a result of this, the Kubernetes ecosystem is incredibly
adaptable, and it can be customized and configured with several plugins and alternative implemen-
tations at various levels to represent the end purpose and intent of the organization in charge of the
cluster. The latter capability has been employed in a real-world implementation to switch from one
network backend to another. The first backend encapsulates and encrypts all packets transferred from
one node to another. There is no need for such rigorous security measures in the cluster. Therefore,
the backend has been modified to need just direct Layer 2 communication between the nodes without
any encryption. Moreover, the latter not only needed fewer dependencies but also improved overall
performance because the extra procedures were no longer required.
The following information is essential for understanding the basic principles of K8s networking. They
were collected from the official Kubernetes website, which can be found at https://kubernetes.io.
Sharing computers often necessitates ensuring that two applications do not attempt to use the same
ports. Port coordination, also known as dynamic port allocation, is extremely difficult to do at scale
and exposes cluster-level issues. Kubernetes, on the other hand, takes a different approach.
Every Pod25, which are the smallest deployable units of computing that can be created and managed in

25https://kubernetes.io/docs/concepts/workloads/pods

20

https://kubernetes.io
https://kubernetes.io/docs/concepts/workloads/pods

a cluster, is assigned its cluster-wide IP address. This eliminates the need to explicitly construct con-
nections between Pods and deal with container ports mapping to node ports. As a result, Kubernetes
enforces the following basic criteria for any networking implementation:

• Pods can communicate with all other pods on any other node without the use of NAT (Net-
work Address Translation). NAT is a means of transparently mapping an IP address space to
another[16].

• Kubernetes agents (such as system daemons, kubelet, and so on) on a node can communicate
with all pods on that node.

Kubernetes IP addresses exist at the Pod scope; containers within a Pod share their network names-
paces, including their IP address and MAC address. This implies that containers within a Pod may
all contact each other’s ports on localhost; requiring port coordination.
Four concerns are addressed by Kubernetes networking:

1. Highly-coupled container-to-container communications
Containers within a Pod interact through networking via loopback.

2. Pod-to-Pod communications
Cluster networking provides connectivity among different Pods.

3. Pod-to-Service communications
Use Service components to publish services that are only accessible within the Kubernetes cluster.

4. External-to-Service communications
Let an application running in Pods be accessible from outside the cluster by exposing it as a
Service. The Load Balancer Service component, mentioned in the section 2.1.6, is one example.

The container runtime on each node implements the Kubernetes network model. Container runtime
software, such as containerd26 or CRI-O27, is responsible for operating the containers. Container run-
times handle their network and security capabilities via the Container Network Interface (CNI). CNI28

is composed of a specification and libraries for designing plugins that configure network interfaces in
Linux containers. CNI is only concerned with the network connectivity of containers and removing
allocated resources when the container is destroyed.

2.3 reCluster
The architecture has a real-world implementation in the reCluster project29.
reCluster employs several hardware components, such as decommissioned University of Trento30 desk-
top and laptop computers that were previously used by students in the computer classroom, as well
as additional personal hardware components, such as the switch/router, that were left to gather dust
due to an upgrade to a newer model.
Figure 2.4 illustrates the reCluster cluster. Worker nodes are the desktop computers and the two small
single-board computers on the right, while the (single) Controller node is the laptop computer. All
nodes are connected via Ethernet to the switch/router on the left, which is connected to the Internet.
Furthermore, the smart plug in the foreground is utilized for power measurements throughout the
installation procedure (see section 3.5.2).
The cluster is fully functional and can be scaled down to zero Worker nodes by default to consume
the least amount of energy. Furthermore, because the cluster is small, there are (now) no critical
services deployed, and to further decrease the overall power consumption, all essential components
are directly deployed on the Controller node. As a result, the laptop computer acts as the Controller

26urlhttps://containerd.io
27https://cri-o.io
28https://www.cni.dev
29https://github.com/carlocorradini/reCluster
30https://www.unitn.it

21

urlhttps://containerd.io
https://cri-o.io
https://www.cni.dev
https://github.com/carlocorradini/reCluster
https://www.unitn.it

node, running instances of the Server and Database, and has the Registry, Load Balancer, and Cluster
Autoscaler containers deployed by Kubernetes.
If there is no need to use the cluster for some time, the Controller node (as well as the switch/router)
can be terminated. Eventually, to restore the cluster, simply bootstrap the Controller node (along
with the switch/router), and the rest is performed automatically by the Server and Cluster Autoscaler
components according to the overall workload.

Figure 2.4: reCluster cluster

The following chapter, Implementation, describes the details and information of how reCluster
was implemented by following the principles and the theorized architecture, as well as the numerous
decisions that were made.

It should be mentioned that anybody can have a local implementation of reCluster since the
required components are so minimal and ubiquitous that they can even be refurbished from old and
unused components, as in this scenario.

22

3 Implementation
Ideas are easy, Implementation is hard.

Guy Kawasaki

Most of the implementation details and general decisions made for developing a real-world func-
tional project, based on the design architecture presented in chapter 2, are discussed in this chapter.
It is organized in such a way that it starts with the foundation and then progresses to the autoscaling
of worker nodes before moving on to example deployments of various applications in the cluster.
The technology and programming languages utilized in the implementation are heterogeneous. Nev-
ertheless, according to a shared set of APIs and pre-defined structures, they interact as a distinct and
homogenous entity that maintains the entire cluster in an active and healthy state.
Furthermore, several of the components and/or technologies discussed in this chapter are interchange-
able with other solutions. The latter is highly valuable for organizations since it provides more
configuration freedom and final control over the cluster while continuously reflecting its ultimate goal.
The main implementation of the cluster and its related applications currently supports the Linux

platform (see section 2.1.1) together with the architectures amd641 and arm642.

3.1 Distributions
Almost all software relies on the necessity for a stable and consistent operating system (OS).
The OS, as specified in section 2.1.1, is installed on every node in the cluster and must be based
on GNU/Linux. The latter is a critical requirement because most of the technologies employed in
the implementation rely on Linux primitives and core functionality to operate properly. To enforce
resource management for pods and containers, for example, all Kubernetes distributions require the
cgroup v23 kernel module4.
To represent the potential of the implementation architecture being compatible with several Linux
distributions, the section is titled Distributions rather than Operating System.
To be completely compatible with the implementation architecture, a Linux distribution must meet
three major requirements. They are described in the following list:

1. The Linux Kernel version must be compatible with the Kubernetes version.
Newer versions of K8s may require newer versions of the Linux Kernel to provide newer functions
and/or improve overall security.

2. All necessary packages, as explained and documented in the section 3.1.1, must be installed and
globally accessible in the system.
A check on all essential packages is performed before the execution of the installation program,
as detailed in section 3.5. If even one package is missing from the system, the installation fails
with an error message identifying the missing packages.

3. An Init System that is supported and compatible, as defined in the section 3.1.2.
OpenRC and Systemd are supported by the implementation. They are currently the two most
used init systems, and the majority of available distributions are based on one of them.

Finally, two custom Linux distributions are already configured, built, and packaged as ISO files, as
shown in section 3.1.3. They are based on a simple command line with no graphical interface and

1https://wikipedia.org/wiki/X86-64
2https://wikipedia.org/wiki/AArch64
3https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
4https://kubernetes.io/docs/concepts/architecture/cgroups

23

https://wikipedia.org/wiki/X86-64
https://wikipedia.org/wiki/AArch64
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://kubernetes.io/docs/concepts/architecture/cgroups

contain only what is required to start a node. This is done to simplify the overall setup by eliminating
unnecessary software and technologies, addressing any incompatibilities, and increasing the cluster’s
implementation and testing efficiency. Both are derived from pre-existing Linux distributions that are
known to be stable, easy to configure, and lightweight, requiring just the bare minimum of resources
to operate. Furthermore, they are built on separate init systems, requiring the overall implementation
to be compatible with and tested with both.

3.1.1 Packages

The packages used in the implementation that must be available in a Linux distribution are specified
in this section.
All packages may be installed automatically using the package manager of the respective Linux dis-
tribution.
All packages are already included by default in the two custom Linux distributions. As a result, there
is no need for any changes or the installation of extra packages.
Each package in table 3.1 contains a brief description of why it has been utilized. Furthermore, the
required column indicates with symbols if the package is required (Ë), optional (?), or not required
(é). It should be noted that the name of some packages may differ based on the package manager
employed by the Linux distribution.

Name Required Description

bc5 Ë The Linux terminal does not support complicated math oper-
ations or number comparisons. As a result, the bc program
is used throughout the installation procedure to guarantee that
computed data, such as the node’s mean power consumption and
Simple Standard Deviation6, is neither less than nor more than a
threshold value.

coreutils7 Ë By default, minimal Linux distributions only include a portion of
the massive list of utilities provided in the standard coreutils

package. As a result, several of the applications utilized in the im-
plementation are missing. Therefore, the whole coreutils pack-
age is required.

docker8 ? During the cluster initialization procedure, docker is widely uti-
lized to tag and push various container images corresponding to
specific implementation dependencies to the private registry (see
section 3.2.5).
It should be noted that docker is not the only tool for working
with OCI containers, hence the optional symbol, but it is the most
popular with well-known and simple CLI commands. As an ex-
ample, podman9 is a Docker-compatible command line front end
that can simply alias the Docker CLI (alias docker=podman),
requiring no modifications to the implementation code.

ethtool10 Ë If the node’s NIC interface supports Wake-on-Lan (WoL),
ethtool is used to activate it.
It’s worth noting that the NIC interface may reset to factory set-
tings following a reboot. As a result, ethtool is always run before
the NIC interface is activated.

inotify-tools11 Ë Obtaining access information to the underlying Kubernetes clus-
ter is required during the cluster initialization phase. This infor-
mation is only available in an automatically generated configura-
tion file saved in a specific and well-known directory. As a result,
before proceeding to the next phase, the installation script uses
the inotifywait program to wait for the file to be created.

24

iproute212 Ë During the installation phase, the command ip is used to
gather information about physical network interfaces that are not
loopback, such as name and MAC address.

jq13 Ë To manipulate JSON data, all scripts make extensive use of jq.

ncurses14 é The ncurses package includes the tput software, which is a util-
ity for retrieving terminal capabilities in shell scripts.
When the spinner process is spawned in a script, tput is used to
update its symbols at regular intervals, replacing the old one with
the new one and updating the cursor position. Because a spinner
is only a decorative element, the package is not required and can
be omitted.

nodejs15 ? This package is optional since the Server component, see section
2.1.2, may be bundled as a single binary or in a container, remov-
ing the need for the nodejs package to be installed. Because the
present implementation does not provide any of the aforemen-
tioned alternatives, nodejs is included in both of the two custom
Linux distributions.

npm16 ? This package is optional since the Server component may be bun-
dled as a single binary or in a container, removing the need for
the npm package to be installed. Because the present implemen-
tation does not provide any of the aforementioned alternatives,
npm is included in both of the two custom Linux distributions.

openssh17 Ë OpenSSH is critical in the cluster for protecting remote operations,
key management, and other tasks. All operations are inherently
unsafe without its software and can pose serious security issues,
especially if the cluster is accessible from external networks.

postgresql18 ? PostgreSQL is the database implementation used for the
Database component (see section 2.1.3).
This package is optional since the database may be implemented
outside of the cluster using other solutions. It is up to the or-
ganization in charge of the cluster to decide whether or not the
database package should be included in the Linux distribution.

procps-ng19 é The procps-ng package includes the ps software, which displays
information about the system’s active processes.
When the spinner process is spawned in a script, ps is used to
obtain the PID of the parent process. Because a spinner is only
a decorative element, the package is not required and can be
omitted.

sudo20 Ë The installation phase involves actions that need administra-
tive authorization. Before performing any processing, the script
checks to see whether the current user already has root privileges;
if not, it requests them with sudo.

sysbench21 Ë During the installation phase, sysbench is extensively used to
analyze a cluster node’s performance and, in conjunction with
other tools, its power consumption.

tar22 Ë tar is primarily used in production during the installation pro-
cess to extract and manipulate various archive files.
tar is used in development to create the bundle archive for dis-
tribution, which contains all files and applications.

tzdata23 Ë To avoid date and time inconsistencies, all nodes in the cluster
must be configured to the same timezone. By default, all nodes
are configured to the Etc/UTC timezone.

25

util-linux24 Ë The installation script makes use of two util-linux utility pro-
grams: lscpu to display information about the CPU architecture
and lsblk to list block devices.

yq25 Ë To manipulate YAML data, all scripts make extensive use of yq.
yq is primarily used to read and save YAML files. However, be-
cause of its more advanced functions and solutions, jq is used for
the majority of complex data processing, at the expense of yq. As
a result, YAML structures are first transformed to/from JSON,
then processed with jq, and then converted back to/from YAML.
The double conversion should be eliminated and/or simplified in
future implementations.

Table 3.1: Packages list

3.1.2 Init System

The Init System26, short for Initialization System, is the first process that runs when a Unix-based
computer operating system is bootstrapped. Init is a daemon process that is normally given Process
IDentifier 1 (PID 1) and runs until the system is shut down. It is the direct or indirect ancestor of
all other processes and adopts all orphaned processes automatically. The kernel starts Init during the
boot process; if the kernel is unable to start it, a kernel panic occurs.
The Init System is logically positioned above the Kernel and is an essential component of every modern
system. It frequently integrates sophisticated features over simple ones and is very customizable. Fur-
thermore, it offers active control and monitoring over the running processes, keeping the entire system
healthy and active. The latter is critical because it enables automated and continuous monitoring of
cluster implementation architecture-related processes operating in the node without the need for a
custom solution. For example, if a K8s instance executing in a worker node crashes (i.e. exits with a
code different than 0), the Init System detects it and restarts the process automatically, making the
node active and able to receive workload again.
When the node is bootstrapped, the Init System is set to start all cluster-related processes (i.e., K8s
instance and Metric Server) and run a script that sends a message to the server component notifying
it that the node is active and ready. Before the node is shut down, it automatically terminates all
cluster-related processes and sends a message to the server component informing that the node is
shutting down and will be inactive. As previously stated, the cluster performs these two operations
automatically: bootstrap for upscaling and shutdown for downscaling. However, there are scenarios

5https://www.gnu.org/software/bc
6https://wikipedia.org/wiki/Standard_deviation
7https://www.gnu.org/software/coreutils
8https://docs.docker.com/engine
9https://podman.io

10https://www.kernel.org/pub/software/network/ethtool
11https://github.com/inotify-tools/inotify-tools
12https://wiki.linuxfoundation.org/networking/iproute2
13https://stedolan.github.io/jq
14https://invisible-island.net/ncurses
15https://nodejs.org
16https://www.npmjs.com
17https://www.openssh.com
18https://www.postgresql.org
19https://gitlab.com/procps-ng/procps
20https://www.sudo.ws
21https://github.com/akopytov/sysbench
22https://www.gnu.org/software/tar
23https://www.iana.org/time-zones
24https://github.com/util-linux/util-linux
25https://mikefarah.gitbook.io/yq
26https://wikipedia.org/wiki/Init

26

https://www.gnu.org/software/bc
https://wikipedia.org/wiki/Standard_deviation
https://www.gnu.org/software/coreutils
https://docs.docker.com/engine
https://podman.io
https://www.kernel.org/pub/software/network/ethtool
https://github.com/inotify-tools/inotify-tools
https://wiki.linuxfoundation.org/networking/iproute2
https://stedolan.github.io/jq
https://invisible-island.net/ncurses
https://nodejs.org
https://www.npmjs.com
https://www.openssh.com
https://www.postgresql.org
https://gitlab.com/procps-ng/procps
https://www.sudo.ws
https://github.com/akopytov/sysbench
https://www.gnu.org/software/tar
https://www.iana.org/time-zones
https://github.com/util-linux/util-linux
https://mikefarah.gitbook.io/yq
https://wikipedia.org/wiki/Init

in which a node is manually bootstrapped and/or shut down by human action without involving the
server component directly. Despite the possibility of the latter, the overall cluster state remains con-
sistent, and all node statuses are correctly updated, thanks to the Init System and its monitoring and
configuration capabilities.
The implementation currently supports two init systems: OpenRC (described in section 3.1.2.1) and
Systemd (described in section 3.1.2.2). They are the two most popular and widely used Init Systems,
and the vast majority of Linux distributions support one or both of them. Their capabilities are nearly
identical. However, configuration files and available application(s) that interact with the bare-metal
Init System API, are different, necessitating double effort to achieve the same objective.
It should be noted that if the Init System daemon process crashes due to an error, the entire system
crashes and becomes inactive, necessitating a manual restart. Even though the likelihood of the latter
is extremely low, it is never zero. As a result, as stated in section 2.1.2, a heartbeat mechanism
has been established in the cluster to constantly monitor and identify the status and availability of
all active nodes. If there are no configuration or networking issues and a node’s heartbeat is not re-
ceived within the predefined interval, it indicates that the heartbeat daemon executing in the node has
crashed and has not yet been restarted, or that the entire node has crashed and is not automatically
recoverable.
In each of the following sections, where an Init System distribution is described, an example of the
related service configuration file is presented to illustrate its differences. A service configuration file
contains information about a process that the Init System controls and monitors. The application
used as a reference in this example is K3s, a lightweight Kubernetes distribution explained in further
detail in section 3.2.3. Before starting, it must clear any temporary files in the tmp directory and
load environment variables from two distinct directories. Furthermore, anytime the application pro-
cess crashes, the Init System must restart it within 5 seconds after detection. Even though each Init
System has a unique service configuration file, the result is nearly identical. The list below highlights
some of the most significant configuration requirements. To aid comprehension, the identification
number for each requirement is also provided in the Init System’s service configuration file.

1 General information about the service.
Useful for users and/or administrators.

2 Services on which the service is dependent.
The listed services must be activated before the current service may start.

3 Remove any temporary files that begin with the name k3s and are placed in the temporary
(tmp) directory before launching the application.

4 Type of service. Different types correspond to various service behaviors as well as how the
application is monitored and regulated.
In this case, monitor the application process and restart it if there is a crash or an anomaly.

5 Absolute path to the application’s binary file.

6 Application arguments.

7 Waiting time in seconds before restarting the crashed application.

8 The maximum number of restarts permitted. When the threshold is met, the program is no
longer restarted.
A value of 0 indicates that no threshold exists and that the application has no restart limit.

9 Load /etc/environment and /etc/rancher/k3s/k3s.env environment variables files before
starting the application.

27

3.1.2.1 OpenRC

Source: https://www.gentoo.o

rg/inside-gentoo/artwork/ge

ntoo-logo.html

Figure 3.1: Gentoo Linux
logo

OpenRC27 is a dependency-based init system for Unix-like systems that
maintain compatibility with the system’s init system, which is generally
found in /sbin/init.
At boot, OpenRC starts the appropriate system services in the right se-
quence, manages them while the system is running, and stops them at
shutdown. It can manage installed daemons, optionally monitor the pro-
cesses it launches, and start processes in parallel when possible to reduce
boot time.
OpenRC was developed for Gentoo28, but it may be used in other Linux
distributions and BSD29 systems as well.
Listing 3.1 illustrates the example of the OpenRC service configuration file for K3s saved in
/etc/init.d/k3s. Manual control of the service is possible using the rc-service command, which
locates and runs the OpenRC service with the specified arguments: rc-service k3s <CMD> [...].
<CMD> can be substituted by start to start the service, stop to stop the service, restart to restart
the service, and status to acquire the service status. Furthermore, with the command rc-update

add k3s default, the service may be set to start automatically when the system boots up. The latter
examples are merely a very small subset of all the available commands/capabilities that OpenRC is
capable of.

1 #!/sbin/openrc-run

2

3 name="k3s" 1

4 description="Lightweight Kubernetes" 1

5

6 depend() {

7 want cgroups 2

8 after network-online 2

9 }

10

11 start_pre() {

12 rm -f "/tmp/k3s.*" 3

13 }

14

15 supervisor="supervise-daemon" 4

16 command="/usr/local/bin/k3s" 5

17 command_args="server" 6

18 output_log="/var/log/k3s.log"

19 error_log="/var/log/k3s.log"

20 pidfile="/var/run/k3s.pid"

21 respawn_delay=5 7

22 respawn_max=0 8

23

24 set -o allexport

25 if [-f "/etc/environment"]; then sourcex "/etc/environment"; fi 9

26 if [-f "/etc/rancher/k3s/k3s.env"]; then sourcex "/etc/rancher/k3s/k3s.env"; fi 9

27 set +o allexport

Listing 3.1: OpenRC service configuration file for K3s

3.1.2.2 systemd

Source: https://brand.system

d.io

Figure 3.2: systemd logo

systemd30 is a collection of building blocks for a Linux system. It provides
a system and service manager that runs as PID 1 and starts the rest of
the system.
systemd supports aggressive parallelization, on-demand daemon startup,
process tracking through Linux control groups, mount and automount

27https://wiki.gentoo.org/wiki/OpenRC
28https://www.gentoo.org
29https://www.bsd.org
30https://systemd.io

28

https://www.gentoo.org/inside-gentoo/artwork/gentoo-logo.html
https://www.gentoo.org/inside-gentoo/artwork/gentoo-logo.html
https://www.gentoo.org/inside-gentoo/artwork/gentoo-logo.html
https://brand.systemd.io
https://brand.systemd.io
https://wiki.gentoo.org/wiki/OpenRC
https://www.gentoo.org
https://www.bsd.org
https://systemd.io

point management, and a complex transactional dependency-based ser-
vice control logic.
Other components include a logging daemon, tools to handle basic system configuration such as the
hostname, date, and locale, a list of logged-in users and running containers and virtual machines, sys-
tem accounts, runtime directories and settings, and daemons to manage simple network configuration,
network time synchronization, log forwarding, and name resolution.
Listing 3.2 illustrates the example of the systemd service configuration file for K3s saved in
/etc/systemd/system/k3s.service. The systemctl command, which manages the systemd sys-
tem and the service manager, may be used to manually control the service: systemd <CMD> k3s

[...]. <CMD> can be replaced with start to start the service, stop to stop it, restart to restart
it, and status to obtain the service status. Furthermore, the service may be enabled to start au-
tomatically when the system boots up by using the commands systemctl enable k3s followed by
systemctl daemon-reload to reload the systemd management configuration. The latter examples
are only a small portion of all the commands and capabilities provided by systemd.

1 [Unit]

2 Description=Lightweight Kubernetes 1

3 Documentation=https://k3s.io 1

4 Wants=network-online.target 2

5 After=network-online.target 2

6 StartLimitBurst=0 8

7

8 [Install]

9 WantedBy=multi-user.target

10

11 [Service]

12 Type=notify 4

13 ExecStartPre=/usr/bin/env sh -c 'rm -f "/tmp/k3s.*"' 3

14 ExecStart=/usr/local/bin/k3s server 5 6

15 EnvironmentFile=-/etc/environment 9

16 EnvironmentFile=-/etc/rancher/k3s/k3s.env 9

17 KillMode=process

18 Delegate=yes

19 TimeoutStartSec=0

20 Restart=always 4

21 RestartSec=5s 7

Listing 3.2: systemd service configuration file for K3s

3.1.3 ISO Image

This section briefly describes the two original Linux distributions, Alpine Linux and Arch Linux, which
served as the foundation for the two custom Linux distributions. They were both utilized and tested
together in the implementation cluster. Furthermore, it is shown how the two custom ISO image files
are customized and generated by the use of a simple script.
The ISO image can be burned into physical media such as a CD, or a USB flash drive or can be
mounted as an ISO file. The latter shows the high level of flexibility and overall compatibility that an
ISO file has. Moreover, it is extremely portable since it is intrinsically only a single file making it the
perfect format for a release bundle and very useful in an Air-Gap environment.
After an ISO image of a Linux distribution has been burned to media, it can be easily installed on
multiple systems by attaching the media to the system and selecting it as the default boot. It starts a
live (volatile) OS that is not currently installed on the primary disk. The live Linux distribution may
then be installed directly into the primary disk, making it permanently available on the system without
the need for removable media. The latter step may be performed manually, but it is more complex
than it appears since it necessitates an understanding of disk formatting, partitioning, as well as other
topics. Fortunately, most Linux distributions, including the two custom ones, have simple tools that
automate the installation procedure by asking only a few simple questions to the user/administrator.

29

3.1.3.1 Alpine Linux

Source: https://alpinelinux.

org

Figure 3.3: Alpine Linux
logo

Alpine Linux31 is a lightweight, security-focused, and resource-efficient dis-
tribution. In recent years, has grown in popularity as the foundation for
the majority of Docker images. It is based on musl32 (an implementation
of the C standard library, an alternative to glibc33), BusyBox34 (a sin-
gle, small executable that combines tiny versions of many common UNIX
utilities), a custom package manager called APK35 and the OpenRC Init
System[7].
Alpine Linux is the preferred reCluster distribution since it has been widely used and tested throughout
the development process.

The official documentation36 provides a brief guideline on how to build a custom Alpine Linux ISO
image. Unfortunately, it is not exhaustive, and it assumes a lot of information and configurations. A
simpler, easy-to-use, and portable solution is required for cluster implementation. This resulted in the
creation of a POSIX script that handles all of the burdens, as explained below.
Building a custom Alpine Linux ISO image involves three prerequisites: an Alpine Linux system,
specific tools/packages to configure and build the image, and a general configuration with a special
administrator user and the generation of signing keys. These requirements remain constant over time
and can be regarded as essentially static. Furthermore, having a physical Alpine Linux system dedi-
cated just to generating custom images is a waste of resources. As a result, a custom Dockerfile3738

based on Alpine Linux has been created to allow building the image in different environments without
the need for a physical machine and with all of the previous requirements already fulfilled.
The ISO image is customized using the mkimg.recluster.sh39 file, which defines and integrates a
custom recluster profile, based on the basic Alpine Linux profile. This file, whose content is shown
in listing 3.3, is not included in the Dockerfile because it is considered dynamic, in the sense that it
could be updated and customized over time to meet potential new cluster specifications.
Finally, to create the ISO image, the container image must be launched in detached mode, a local
volume mounted to the container, the mkimg.recluster.sh file loaded, and the official mkimage.sh
script executed with extra configuration parameters. When performed manually, the latter tasks are
extremely difficult and prone to human error. As a result, all operations have been included in a
POSIX script, simply named build.sh40, that does everything automatically, including cleanup pro-
cedures when the image(s) has been generated or an error occurs. Moreover, all ISO images created
are saved in the current working directory under the directory iso. As an example, a custom image
based on Alpine Linux version 3.17 and generated with the recluster profile for architecture x86 64 is
saved as alpine-recluster-v3.17-x86 64.iso and is just 190MiB in size.
To configure and install Alpine Linux permanently on the primary disk, simply run the setup-alpine41

program and answer a few easy questions.

1 profile_recluster() {

2 profile_base

3 title="reCluster"

4 desc="reCluster Alpine Linux"

5 profile_abbrev="recluster"

6 image_ext="iso"

7 arch="x86_64 aarch64"

8 output_format="iso"

9 apks="$apks coreutils docker ethtool inotify-tools iproute2 jq ncurses nodejs npm postgresql

31https://www.alpinelinux.org
32https://musl.libc.org
33https://www.gnu.org/software/libc
34https://busybox.net
35https://wiki.alpinelinux.org/wiki/Alpine_Package_Keeper
36https://wiki.alpinelinux.org/wiki/How_to_make_a_custom_ISO_image_with_mkimage
37https://docs.docker.com/engine/reference/builder
38https://github.com/carlocorradini/reCluster/blob/main/distributions/alpine/Dockerfile
39https://github.com/carlocorradini/reCluster/blob/main/distributions/alpine/mkimg.recluster.sh
40https://github.com/carlocorradini/reCluster/blob/main/distributions/alpine/build.sh
41https://docs.alpinelinux.org/user-handbook/0.1a/Installing/setup_alpine.html

30

https://alpinelinux.org
https://alpinelinux.org
https://www.alpinelinux.org
https://musl.libc.org
https://www.gnu.org/software/libc
https://busybox.net
https://wiki.alpinelinux.org/wiki/Alpine_Package_Keeper
https://wiki.alpinelinux.org/wiki/How_to_make_a_custom_ISO_image_with_mkimage
https://docs.docker.com/engine/reference/builder
https://github.com/carlocorradini/reCluster/blob/main/distributions/alpine/Dockerfile
https://github.com/carlocorradini/reCluster/blob/main/distributions/alpine/mkimg.recluster.sh
https://github.com/carlocorradini/reCluster/blob/main/distributions/alpine/build.sh
https://docs.alpinelinux.org/user-handbook/0.1a/Installing/setup_alpine.html

procps sudo sysbench tzdata util-linux yq"

10 apkovl="genapkovl-recluster.sh"

11 }

Listing 3.3: Contents of mkimg.recluster.sh file which shows the reCluster profile definition

3.1.3.2 Arch Linux

Source: https://archlinux.or

g/art

Figure 3.4: Arch Linux
logo

Arch Linux42 is a general-purpose distribution that focuses on simplicity,
minimalism, and code elegance. It is based on Systemd Init System and
strives to stay bleeding edge, offering the latest stable versions of most soft-
ware through Pacman43 package manager. Uses a rolling release system
that allows one-time installation and perpetual software upgrades, allow-
ing to not reinstall or upgrade the system from one version to the next.
Notably, Arch Linux is the foundation for several many popular enterprise-
grade distributions, such as Manjaro44 and SteamOS45, demonstrating its
customizability, power, and stability.

The official documentation46 includes precise guidelines for building a custom Arch Linux ISO
image. For cluster implementation, there is a need for only a basic/minimal image with a simple and
easy-to-use procedure. As a result, a POSIX script has been written to handle all of the difficulties
and configurations (described below). Some techniques are quite similar to those outlined in Alpine
Linux. However, the files and overall configurations differ significantly.
Building a custom Arch Linux ISO image requires three prerequisites: an Arch Linux system, specific
tools/packages to configure and build the image, and a general configuration with a baseline profile.
As with Alpine Linux, these requirements remain constant over time, resulting in the same possible
problems. As a result, a custom Dockerfile47 based on Arch Linux has been developed.
The ISO image is customized with the profiledef.sh48 file, the content of which is displayed in
listing 3.4, that defines and integrates a custom profile based on the baseline Arch Linux profile
already included in the container image. For the same reasons as in Alpine Linux, this file is not
available in the Dockerfile container image.
Finally, similar to the Alpine Linux approach, the container image must be launched, a local volume
mounted, the profiledef.sh file loaded, and the official mkarchiso program executed with extra
configuration parameters to generate the ISO image. Because of its inherent difficulties, the latter
exposes the same issues as in Alpine Linux. Therefore, a similar POSIX script, also named build.sh49,
has been created with similar features but adapted to Arch Linux. As an example, a custom Arch
Linux image based on the reCluster profile and built on March 23rd 2023 for architecture x86 64 is
saved as reCluster-2023.03.23-x86 64.iso and is 731MiB in size.
To configure and install Arch Linux permanently on the primary disk, simply run the archinstall50

program and answer a few easy questions.

1 iso_name="reCluster"

2 iso_label="ARCH_$(date +%Y%m)"

3 iso_publisher="reCluster"

4 iso_application="reCluster Arch Linux"

5 iso_version="$(date +%Y.%m.%d)"

6 install_dir="arch"

7 buildmodes=("iso")

8 bootmodes=("bios.syslinux.mbr" "bios.syslinux.eltorito"

9 "uefi-ia32.grub.esp" "uefi-x64.grub.esp"

10 "uefi-ia32.grub.eltorito" "uefi-x64.grub.eltorito")

42https://archlinux.org
43https://wiki.archlinux.org/title/Pacman
44https://manjaro.org
45https://store.steampowered.com/steamos
46https://wiki.archlinux.org/title/archiso
47https://github.com/carlocorradini/reCluster/blob/main/distributions/arch/Dockerfile
48https://github.com/carlocorradini/reCluster/blob/main/distributions/arch/profiledef.sh
49https://github.com/carlocorradini/reCluster/blob/main/distributions/arch/build.sh
50https://wiki.archlinux.org/title/archinstall

31

https://archlinux.org/art
https://archlinux.org/art
https://archlinux.org
https://wiki.archlinux.org/title/Pacman
https://manjaro.org
https://store.steampowered.com/steamos
https://wiki.archlinux.org/title/archiso
https://github.com/carlocorradini/reCluster/blob/main/distributions/arch/Dockerfile
https://github.com/carlocorradini/reCluster/blob/main/distributions/arch/profiledef.sh
https://github.com/carlocorradini/reCluster/blob/main/distributions/arch/build.sh
https://wiki.archlinux.org/title/archinstall

11 arch="x86_64"

12 pacman_conf="pacman.conf"

13 airootfs_image_type="erofs"

14 airootfs_image_tool_options=("-zlz4hc,12 -E ztailpacking")

15 file_permissions=(

16 ["/etc/shadow"]="0:0:400"

17)

Listing 3.4: Contents of profiledef.sh file which shows the reCluster profile definition

3.2 Dependencies
This section is split into three segments, each of which is dependent on the preceding one’s knowledge.
The first segment defines an Air-Gap environment and why it is critical for overall implementation,
and more broadly for specific cluster use cases, to allow scenarios where internet access is highly lim-
ited or even non-existent.
The second segment illustrates and explains the most important third-party applications on which
the overall architectural implementation is based. Each one is tailored to a distinct function in the
cluster and has a direct logical mapping to a component in the architecture depicted in chapter 2.
The majority, but not all, of the specified applications are interchangeable with other implementation-
s/distributions. As a result, any application-specific configuration and/or capability must be adjusted
and/or reconfigured to be compatible with the new one.
The Server and Autoscaler components are missing because, due to their importance and implementa-
tion, they have their dedicated sections, section 3.3 and section 3.4, where they are explained in greater
detail. Nevertheless, the name of the related component’s implementation appears in various portions
of this section. It should be noted that the Server implementation is cloud/cluster provider-specific,
and therefore it is completely built from scratch, whereas Autoscaler has an official Kubernetes imple-
mentation that is only compatible with a limited number of particular and large cloud providers. As a
result, a custom solution has been created that is derived from the original and has been appropriately
changed to support the cluster implementation, Server API, and overall use case.
Finally, the last segment discusses how to manage all dependencies and how they are downloaded for
a cluster release and to be functional in an Air-Gap scenario, among other things. The latter relies
on an intuitive configuration file and a user-friendly POSIX script.

3.2.1 Air-Gap Environment

All devices in an Air-Gap environment have no physical connectivity to the public internet or any
other Local Area Network (LAN) that is not itself in an Air-Gap environment. Email clients, browsers,
SSH, and other communication applications are all physically and logically isolated from the outside
world.
Systems in an Air-Gap environment are permanently separated from the outside world by default.
However, if possible, the network can communicate with other physically isolated devices. Any data
transfer outside of the network must take place via external hardware that is temporarily connected
to the network. USB flash drives, Hotspot devices and other removable media are examples of such
hardware. Importantly, these external devices must be physically connected to and disconnected from
the Air-Gap environment network by human intervention.
Figure 3.5 depicts an example overview of an Air-Gap environment consisting of two distinct Air-Gap
networks that can connect with one another. Because they are on separate networks, each network re-
sembles a hypothetical cluster implementation where communication between the two does not directly
involve cluster operations and administration (see section 2.2.2). Every machine in the environment is
unable to exchange data, connect to any external network, or connect to the internet in general. The
only mechanism to move data between the Air-Gap environment and the outside world is through the
use of a USB flash drive, and the only way to connect the Air-Gap networks to an external network
and/or the internet is through the use of a personal hotspot. Because no automated mechanisms are
involved, both of the latter actions need human interaction.
Air-Gap environments are frequently employed in Network Security scenarios where security is a top
priority. In an Air-Gap scenario, a correctly designed network mandates that devices within the net-

32

work be invisible to and successfully isolated from remote threat actors, who often scan the public
internet for vulnerable devices. Similarly, an attacker outside of the Air-Gap environment network
cannot directly execute Remote Code Execution (RCE) attacks on potential software vulnerabilities
within the environment[27].
Although Air-Gap environments are extensively employed in the security branch, high-security sce-
narios are not the only ones for which the cluster implementation is designed. In reality, there are
situations in which the internet connection, and thus the connectivity to the external global network
is either too expensive to maintain or not available at all in the location where the cluster is deployed.
To be fully compatible with an Air-Gap environment in various possible scenarios, the cluster im-
plementation is designed to have all external dependencies, including custom Linux Distributions,
pre-packaged with each cluster release and without the need, by default, for possible external requests
during its utilization. As a result, all that is required is the unique archive file, which is automatically
created with each new release and contains all of the files required to bootstrap a functioning cluster
instance. Furthermore, even if not in an Air-Gap environment, during the installation procedure,
the organization in charge of the cluster’s administration can choose to either download all external
dependencies from the internet (every time for every node) or to directly use the already available
pre-packaged dependencies, reducing network usage as well as overall installation time.

SERVER

DATABASENODE

NODE

NODE

SERVER

DATABASENODE

NODE

NODE

Air-Gap Network

Air-Gap Network

Air-Gap Environment

Archive
File

USB
Flash
Drive

Personal
Hotspot

Manual
Data

Transfer

External Network

Figure 3.5: An Air-Gap Environment composed of two Air-Gap Networks that are physically and
logically isolated by any external data exchange and network

33

3.2.2 PostgreSQL

Source: https://wiki.postgre

sql.org/wiki/Logo

Figure 3.6: PostgreSQL
logo

Premise: This section varies from the other following sections in that it
does not intend to go into detail about the PostgreSQL dependency and
what and how its core features have been employed in the cluster imple-
mentation. PostgreSQL has only been used in the most basic ways for
storing the server’s data in a persistent and reliable system. Furthermore,
there are numerous database systems to choose from, both free and paid,
each with unique characteristics that might meet the different requirements
of the organization managing the cluster.

PostgreSQL51 is a powerful, open-source object-relational database system that uses and extends the
SQL language with several capabilities for properly storing and scaling the most complex data work-
loads. It is designed to assist developers in building applications, and administrators in preserving
data integrity and building fault-tolerant systems.
PostgreSQL has a direct mapping with the cluster architecture’s Database component.
PostgreSQL was chosen over all other possible alternatives for three key reasons, which are detailed
below:

1. Is one of four databases officially supported by the K3s dependency (see section 3.2.3) that may
be utilized as an external data source for persistently storing the Kubernetes cluster’s state (see
section 3.2.3.1).

2. The Prisma ORM (see section 3.3.1.1) used in the server component implementation officially
supports it (see section 3.3).

3. The server implementation mostly employs simple SQL code, with no complex or proprietary
functionalities. As a result, it may be easily substituted with MySQL52 (another database that
fulfills the preceding two criteria) without any difficult migration procedures. The latter is
particularly valuable since it allows organizations to select from a variety of database systems
while being compatible with cluster implementation.

3.2.3 K3s

Source: https://k3s.io

Figure 3.7: K3s logo

K3s53 is a lightweight Kubernetes distribution designed for production
workloads in resource-constrained, high-availability, unattended, and re-
mote environments. K3s is the cluster implementation’s core, where all
Kubernetes-related operations are managed and processed. Because K3s
is an element of both a Worker and a Controller Node has no clear map-
ping to an architectural component.
K3s is distributed as a single small binary (less than 60MiB) that reduces

the requirements and procedures required to install, run, and automatically update a production Ku-
bernetes cluster. It is completely compatible with both the OpenRC and systemd Init Systems and can
run on any Linux distribution with a Kernel that satisfies the basic Kubernetes requirements.

3.2.3.1 Enhancements

K3s is a fully compliant Kubernetes distribution that has removed the majority of legacy, alpha, and
cloud-provider-specific code to minimize overall application size and hardware requirements. Further-
more, K3s provides the following enhancements over a conventional Kubernetes distribution54:

• All required dependencies are pre-packaged within a single binary file, necessitating only a mod-
ern Kernel and cgroup mounts.

• Lightweight storage backend with SQlite55 as the default storage mechanism. Additional solu-
tions based on etcd56, MySQL, or PostgreSQL are also available. Both embedded and external

51https://www.postgresql.org
52https://www.mysql.com
53https://k3s.io
54https://docs.k3s.io
55https://www.sqlite.org
56https://etcd.io

34

https://wiki.postgresql.org/wiki/Logo
https://wiki.postgresql.org/wiki/Logo
https://k3s.io
https://www.postgresql.org
https://www.mysql.com
https://k3s.io
https://docs.k3s.io
https://www.sqlite.org
https://etcd.io

storage mechanisms are supported.
The cluster architecture design, as stated in chapter 2, is based on a high availability model
rather than a fault tolerance strategy. As a result, it is recommended to use etcd (embedded
or external) or the already available cluster’s database as an external storage mechanism, elim-
inating needless data replications and relying on a single storage area that can be controlled
autonomously.

• Secure by default, with appropriate default parameters for lightweight environments. K3s man-
ages automatically the complexity of TLS (Transport Layer Security) like certificate distribu-
tions.
If security is not a priority, or if the cluster is in an Air-Gap environment, the security settings
can be relaxed to increase the overall cluster’s performance while simultaneously decreasing
resource utilization.

3.2.3.2 Architecture

K3s architecture57 clearly distinguishes between two types of Nodes, Server nodes and Agent nodes,
which are described below. Furthermore, figure 3.8 depicts the distinction between the two node types
by displaying the various components provided on each node.

1. Server node
A server node is defined as a host running the K3s server command (k3s server), with K3s
managing the control-plane and datastore components.
The Controller Node component of the cluster’s architecture, depicted in the section 2.1.1.2,
is a logical mapping to the K3s Server Node.

2. Agent node
An agent node is defined as a host running the K3s agent command (k3s agent), that does not
have any datastore or control-plane components running.
The Worker Node component of the cluster’s architecture, depicted in the section 2.1.1.1, is a
logical mapping to the K3s Agent Node.

Source: https://k3s.io

Figure 3.8: Difference between K3s Server and K3s Agent nodes

Additionally, the K3s architecture is completely adaptable and may accommodate a variety of
different setups, as shown in the list below, depending on the cluster’s usage and ultimate goal.

57https://docs.k3s.io/architecture

35

https://k3s.io
https://docs.k3s.io/architecture

1. Single Server with an Embedded Database

A single-node K3s server with a SQLite database embedded. Each agent node is associated with
the same K3s Server node. By utilizing the K3s API on the Server node, an administrator can
directly control the Kubernetes resources.
This configuration is only recommended for testing purposes, not for real-world production
deployments or cluster implementation.

2. High-Availability Server with an Embedded Database

A High-Availability (HA) K3s cluster is composed of two or more Server nodes that serve the
Kubernetes API as well as additional control plane services. The database is embedded and
operated on the same Server node by the K3s instance.

3. High-Availability Server with an External Database

Similar to the previous setup, however, the datastore is located outside of the Server Node.
The K3s Server instance does not execute any database application and instead relies on an
externally accessible and operating database.

3.2.3.3 The Choice

The K3s distribution was chosen from among a multitude of various Kubernetes distributions, includ-
ing the official one, for the four main reasons, listed below.

1. Minimal hardware requirements that are simple to satisfy, even on older systems58:

• A Server node requires 1 GiB of memory and 1 CPU core.
As stated in the section 2.1.1.2, the Server (Controller) node’s minimal hardware require-
ments must be adjusted to match the cluster’s size. A cluster with hundreds of Worker
nodes managed by a single Server node with only 1 GiB of memory and 1 CPU core is
unrealistic.

• An Agent node requires 512 MiB of memory and 1 CPU core.
A Raspberry Pi 3 Model B59 single-board computer, released in February 2016 (7 years
ago at the time of writing), is fully compatible with K3s and can operate as a Worker node
without any difficulty.

In comparison, the official Kubernetes distribution, kubeadm60, necessitates at least 2 GiB of
memory and 2 CPU cores.

2. Configurability, modularity, and usability61.
As an example, it is extremely simple to bootstrap a small Kubernetes cluster using K3s in a
Single Server with an Embedded Database setup:

• Start the Server node with a unique token (used to join a Server or Agent nodes to the
cluster).
k3s server --token "<TOKEN>"

• Start the Agent node specifying the unique token and the Server address.
k3s agent --token "<TOKEN>" --server "<SERVER_ADDRESS>"

3. K3s can be easily installed in an Air-Gap environment62. The only additional steps necessary
to have a fully functional cluster in comparison to a standard installation are the deployment of
a private registry (see section 3.2.5) and the manual deployment of particular container images
on each node.
By default, the cluster implementation installation (see section 3.5) already meets the latter

58https://docs.k3s.io/installation/requirements
59https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus
60https://kubernetes.io/docs/setup/production-environment/tools/kubeadm
61https://docs.k3s.io/installation/configuration
62https://docs.k3s.io/installation/airgap

36

https://docs.k3s.io/installation/requirements
https://www.raspberrypi.com/products/raspberry-pi-3-model-b-plus
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm
https://docs.k3s.io/installation/configuration
https://docs.k3s.io/installation/airgap

two requirements. As a result, an organization that has to deploy a cluster in an Air-Gap
environment already has received all of the required files and programs without the need for
any additional data transfer involving an internet connection. As a result, an organization that
has to deploy a cluster in an Air-Gap environment already has all of the necessary files and
applications without the need for any additional data transfer involving an internet connection.

4. On August 19th, 2020, the K3s project was approved into the Cloud Native Computing Foun-
dation63 (CNCF) with Sandbox maturity level64. CNCF is a vendor-neutral cloud native com-
puting, hosting critical components of the global technology infrastructure dedicated to making
cloud native ubiquitous. CNCF certifies Kubernetes software compliance, ensuring that every
vendor’s version of Kubernetes, as well as open source community versions, supports the large
set of Kubernetes APIs. The latter means full compatibility with all existing Kubernetes prod-
ucts and software, allowing for the interchangeability of various components within the cluster
implementation representing diverse organizations’ core aspects.

3.2.4 Node Exporter

Node Exporter65 provides hardware and OS-related metrics exposed by the *NIX Kernel. It is widely
used in both testing and production environments thanks to its broad compatibility, simplicity of
configuration, and reliability, and it can be regarded as the reference implementation for a Metrics
Server. Because it is an element that constitutes both a Worker and a Controller Node, Node Exporter
does not have a clear mapping to an architectural component.

3.2.4.1 Collectors

For each Operating System, such as Linux or OpenBSD66, Node Exporter supports a wide range of
different collectors, such as cpu for providing CPU statistics or meminfo for exposing memory statis-
tics67. A collector68 is an element of an exporter, which represents a collection of metrics. If it is
part of direct instrumentation, it may be a single metric, or it may be multiple metrics if it is pulling
metrics from another system. Collectors can be enabled (node_exporter --collector.<NAME>) or
disabled (node_exporter --no-collector.<NAME>) based on the data that the node needs to provide
for monitoring. The exposed metrics are represented in a standardized format (see section 3.2.7.1),
allowing Prometheus (see section 3.2.7) to analyze and process them. Listing 3.5 depicts an example
section of a response generated by Node Exporter running on a node with two CPU cores and ap-
proximately 4 GiB of system memory. Three metrics are displayed, one from the cpu collector and
the other two from the meminfo collector: node cpu seconds total is a counter that keeps track of
how many seconds each CPU core (0 and 1) spent in each mode, node memory MemTotal bytes is the
total amount of physical memory (in bytes), and node memory MemFree bytes is the total amount of
physical memory (in bytes) that is not in use.

1 # HELP node_cpu_seconds_total Seconds the CPUs spent in each mode.

2 # TYPE node_cpu_seconds_total counter

3 node_cpu_seconds_total{cpu="0",mode="idle"} 980.6

4 node_cpu_seconds_total{cpu="0",mode="iowait"} 2.18

5 node_cpu_seconds_total{cpu="0",mode="irq"} 2.97

6 node_cpu_seconds_total{cpu="0",mode="nice"} 0

7 node_cpu_seconds_total{cpu="0",mode="softirq"} 1.47

8 node_cpu_seconds_total{cpu="0",mode="steal"} 0

9 node_cpu_seconds_total{cpu="0",mode="system"} 0.59

10 node_cpu_seconds_total{cpu="0",mode="user"} 423.57

11 node_cpu_seconds_total{cpu="1",mode="idle"} 954.29

12 node_cpu_seconds_total{cpu="1",mode="iowait"} 4.44

13 node_cpu_seconds_total{cpu="1",mode="irq"} 0.98

14 node_cpu_seconds_total{cpu="1",mode="nice"} 0

63https://www.cncf.io
64https://www.cncf.io/projects/k3s
65https://github.com/prometheus/node_exporter
66https://www.openbsd.org
67https://github.com/prometheus/node_exporter#collectors
68https://prometheus.io/docs/introduction/glossary/#collector

37

https://www.cncf.io
https://www.cncf.io/projects/k3s
https://github.com/prometheus/node_exporter
https://www.openbsd.org
https://github.com/prometheus/node_exporter#collectors
https://prometheus.io/docs/introduction/glossary/#collector

15 node_cpu_seconds_total{cpu="1",mode="softirq"} 1.94

16 node_cpu_seconds_total{cpu="1",mode="steal"} 0

17 node_cpu_seconds_total{cpu="1",mode="system"} 1.43

18 node_cpu_seconds_total{cpu="1",mode="user"} 448.79

19 # HELP node_memory_MemTotal_bytes Memory information field MemTotal_bytes.

20 # TYPE node_memory_MemTotal_bytes gauge

21 node_memory_MemTotal_bytes 4.063023104e+09

22 # HELP node_memory_MemFree_bytes Memory information field MemFree_bytes.

23 # TYPE node_memory_MemFree_bytes gauge

24 node_memory_MemFree_bytes 1.88204544e+09

Listing 3.5: Example section of a Node Exporter response with cpu and meminfo collectors enabled

3.2.4.2 Installer

To represent diverse organizations’ goals and preferences, the cluster’s installation procedure on a
system node, as detailed in the section 3.5, requires complete automation and configuration when
installing a dependency. Despite being a very popular and widely used application, Node Exporter
lacks a fully featured installation script, such as install.sh69 provided by K3s, which can simply
automate every operation. As a solution, a side project called Node Exporter Installer was estab-
lished to address the latter issue(s). The installation script is completely POSIX-compliant, highly
customizable, OpenRC and systemd Init Systems compatible, and requires only basic applications as
dependencies that are ubiquitous in almost all *NIX systems. The project is completely Open Source,
and other users may use it to easily and rapidly configure and install Node Exporter. Attachment A.1
has a detailed description of the Node Exporter Installer project.

3.2.4.3 Graphics Processing Unit metrics

Node Exporter does not support exporting Graphics Processing Unit (GPU) metrics. In general,
supporting systems equipped with GPU(s) in a uniform and easily accessible manner is a fairly hard
undertaking that necessitates a significant amount of work in terms of initial setup and overall admin-
istration. Furthermore, GPU-equipped systems require availability and compatibility with a per GPU
model-specific Kernel driver to be efficient without scarifying precious performance and wasting re-
sources. Nevertheless, exporter implementations such as DCGM-Exporter70 and nvidia gpu exporter71

are specifically designed to provide just GPU metrics that can be used alongside Node Exporter met-
rics. However, all current GPU exporters only support NVIDIA GPUs and require extra dependencies
to be deployed. Moreover, because of its intrinsic heterogeneity, purpose, and complexity of support-
ing GPU systems, the cluster implementation currently does not offer any GPU data, metrics, or
statistics. Furthermore, because the cluster is primarily composed of consumer hardware rather than
high-end enterprise solutions, there is a high possibility that some systems would be equipped with
AMD GPUs, which, as previously stated, are currently not supported by any official and/or reliable
exporter program.

3.2.5 Docker Registry

Source: https://github.com/d

istribution/distribution

Figure 3.9: Docker Reg-
istry logo

Docker Registry72 is a stateless, highly scalable server-side service for stor-
ing and distributing container-based application images. A registry is a
storage and content delivery system that holds container images in differ-
ent tagged versions73.
The Docker Registry, thus the name, has a direct mapping to the Registry
component of the cluster architecture.

69https://github.com/k3s-io/k3s/blob/master/install.sh
70https://github.com/NVIDIA/dcgm-exporter
71https://github.com/utkuozdemir/nvidia_gpu_exporter
72https://docs.docker.com/registry
73https://docs.docker.com/registry/introduction

38

https://github.com/distribution/distribution
https://github.com/distribution/distribution
https://github.com/k3s-io/k3s/blob/master/install.sh
https://github.com/NVIDIA/dcgm-exporter
https://github.com/utkuozdemir/nvidia_gpu_exporter
https://docs.docker.com/registry
https://docs.docker.com/registry/introduction

3.2.5.1 Image Naming

[REGISTRY HOSTNAME][:REGISTRY PORT]IMAGE[:TAG]

An image name is made up of slash-separated name fields that are optionally prefixed with a registry
hostname, complying with standard DNS74 (Domain Name System) rules, and optionally postfixed
with a tag name that identifies different versions of the same series of images. If a hostname is specified,
it may be followed by a port number in the format :PORT. If the registry hostname is not provided,
Docker, Kubernetes, Podman, and practically every other software that deals with container images
by default utilizes Docker’s public registry (Docker Hub75, which is hosted at docker.io at port 443).
If no tag name is supplied, the value latest is automatically assigned, indicating that the image is
designated as the most recent available release version76.
For example, the image name node:18 (short for docker.io:443/node:18) indicates the container
image of Node.js version 18 accessible on the Docker public registry at port 443. Instead, the name
registry.recluster.local:5000/node:18 also identifies the container image of Node.js version 18
but available on the local private registry registry.recluster.local at port 5000. Therefore, if
there is a requirement in the cluster to refer to container images on a registry different from the default
one, the full image name must be provided.

3.2.5.2 Hostname To IP Address Mapping

A local registry deployment requires that there be a known mapping in the cluster between the
registry hostname and the IP address where the registry instance is executing. There are three
options available, as indicated in the list below:

1. Use a custom Kubernetes distribution configuration file/entry to instruct the container run-
time about the mapping. Moreover, if the Kubernetes distribution and runtime support it, the
mapping may also be used to rewrite the default Docker Hub registry hostname to link to an
alternative local registry hostname. An example image docker.io/node:18 is transparently
rewritten as registry.recluster.local:5000/node:18. The latter, allows the cluster to con-
tinue operating without any changes to the container image name of the deployments, enabling
future less possible maintenance burden because the only change that has to be performed is on
the configuration file and not on the cluster deployments.
This functionality is supported by default in K3s77 through a configuration file called registries.yaml
that must be saved in the directory /etc/rancher/k3s on each node in the Kubernetes cluster.

2. Add an entry to the /etc/hosts file on each cluster node.

3. Deploy a DNS component that must be operational in the cluster at all times.
This solution requires that all cluster nodes be configured to know about the local DNS, ei-
ther manually by modifying /etc/resolv.conf file or automatically via DHCP (Dynamic Host
Configuration Protocol).

Each of the three options has pros and cons. If the cluster size is relatively small and the IP address
of the local registry does not vary over time, the first or second (depending on whether the chosen
Kubernetes distribution supports the functionality) solutions are recommended. However, if the cluster
consists of numerous nodes, or if the IP address of the registry changes regularly, or if further hostname
to IP mappings are required, then having a DNS component is by far the best approach. Nonetheless,
the organization operating the cluster makes the final decision on what is the best solution: nothing
prevents the deployment of a DNS component even in a very small cluster.
Because reCluster is based on K3s, has a modest number of nodes, and the IP address of the registry
never changes thanks to MetalLB (see section 3.2.6), the decision fell almost naturally on the first
alternative. Section 3.5.5 goes into further detail on this.

74https://wikipedia.org/wiki/Domain_Name_System
75https://hub.docker.com
76https://docs.docker.com/engine/reference/commandline/tag
77https://docs.k3s.io/installation/private-registry

39

https://wikipedia.org/wiki/Domain_Name_System
https://hub.docker.com
https://docs.docker.com/engine/reference/commandline/tag
https://docs.k3s.io/installation/private-registry

3.2.5.3 Image Storage

The registry must store the available container images in persistent storage to keep them if a failure
occurs or the registry instance is restarted. Storage operation and management are not handled by the
registry itself but are delegated to specialized drivers, the default driver of which is the local POSIX
file system of the node executing the registry instance78.
Saving all container images on a single node is considered bad practice since it creates a single point of
failure that might result in the loss of all images. Therefore, the cluster should be equipped with extra
and more powerful storage drivers intended to tolerate multiple storage device failures at the same
time as well as automated data recovery. It should be noted, however, that the driver(s) chosen must
be compatible with the cluster environment, nodes hardware, and/or meet certain extra requirements.
Almost every cloud provider supplies its customized driver that is compatible with the underlying
high-performance and distributed data center storage system. Implementing a custom storage driver
for the cluster implementation that meets all of the above requirements is extremely difficult owing to
the overall complexity. Thankfully, a storage driver, Longhorn, from the same creators of K3s, already
exists to address the latter with extra features and customization. Thankfully, a storage driver that
addresses the latter problem with extra features and customization already exist: Longhorn, developed
by the same team that created K3s.

Source: https://longhorn.io

Figure 3.10: Longhorn
logo

Longhorn79 is an Open Source and CNCF Incubating project80 that
provides a lightweight, reliable, and simple distributed block storage sys-
tem for Kubernetes. Longhorn provides a dedicated storage controller for
each volume and replicates it synchronously across multiple replicas stored
on multiple nodes. Kubernetes is used to orchestrate and manage the stor-
age controller and replicas. Figure 3.11 depicts Longhorn’s architecture
overview and Read/Write Data Flow between the Volume, Longhorn Engine, Replica Instances, and
Disks.

Source: https://longhorn.io

Figure 3.11: Longhorn’s architecture overview and Read/Write Data Flow between the Volume,
Longhorn Engine, Replica Instances, and Disks

It should be mentioned that having an underlying reliable persistent storage for the whole cluster
benefits not just the registry component but also every other Kubernetes application deployment that

78https://docs.docker.com/registry/introduction
79https://longhorn.io
80https://www.cncf.io/projects/longhorn

40

https://longhorn.io
https://longhorn.io
https://docs.docker.com/registry/introduction
https://longhorn.io
https://www.cncf.io/projects/longhorn

requires any type of persistent storage, such as database and media services.

3.2.6 MetalLB

Source: https://metallb.univ

erse.tf

Figure 3.12: MetalLB
logo

MetalLB81 is a load-balancer implementation for bare-metal Kubernetes
clusters that leverages standard networking and routing protocols.
MetalLB has a direct mapping to the cluster architecture’s Load Balancer
component, and because it is operated directly on and managed by Ku-
bernetes, it is also regarded as an internal Load Balancer that does not
require any external system to work.

3.2.6.1 LoadBalancer Service Type

By default, Kubernetes does not provide a fully functional implementation
of a network load balancer (Service of type LoadBalancer82) for bare-

metal clusters83. The native Kubernetes implementation of network load balancers is just a collection
of predefined interfaces that are explicitly designed/mapped to be compatible with the external and
sophisticated load balancers running within the different cloud providers’ large and energy-hungry data
centers. These interfaces are not a real network load balancer implementations, but rather proxies
that translate different API/function calls from the Kubernetes ecosystem to the individual cloud
provider’s load balancer and vice versa. As a result, all Kubernetes Services of type LoadBalancer on
bare-metal clusters remain in a pending state indefinitely, making any deployments that rely on the
latter services unavailable from outside the Kubernetes network.
Without the capability of using Kubernetes services of LoadBalancer type, the only alternatives for
enabling external traffic to establish connections with internal deployments are primarily two; they
are briefly described below.

• NodePort84

The Kubernetes Control Plane85 allocates a port from a predetermined range, by default from
port 30000 to port 32767, and every node in the cluster proxies the same port into a Service
instance.
Every node in the cluster is configured to listen on the same allocated port and forward traffic
to one of the Service’s ready endpoints.
Any external traffic that connects to any node in the cluster using the proper protocol (i.e., TCP
or UDP) and port (i.e., 31234 or 32000) is forwarded to a matching internal service instance.

• ExternalIPs86

External IP addresses from outside the Kubernetes network are routed to one or more cluster
nodes. Network traffic that enters the cluster using the external IP address (as the destination
IP) on the corresponding Service port is then forwarded to one of the Service endpoints.
External IP addresses are not managed by Kubernetes and are therefore the responsibility of
the cluster administrator.

Both of these service types have considerable disadvantages, making bare-metal clusters unsuitable
for production environments.
MetalLB provides a network load balancer implementation (service of type LoadBalancer) that di-
rectly resides within the Kubernetes environment/network and easily integrates with standard network
devices and protocols, allowing Kubernetes deployments/services to be accessible from external net-
work traffic.

3.2.6.2 Address Allocation

MetalLB is responsible for allocating and assigning IP addresses to services based on predefined IP
address pools that have been manually created by the organization in charge of cluster administra-
tion. If the IP addresses in the pool range are already assigned and/or reachable within the (Internal)

81https://metallb.universe.tf
82https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
83https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer
84https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport
85https://kubernetes.io/docs/concepts/overview/components/#control-plane-components
86https://kubernetes.io/docs/concepts/services-networking/service/#external-ips

41

https://metallb.universe.tf
https://metallb.universe.tf
https://metallb.universe.tf
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport
https://kubernetes.io/docs/concepts/overview/components/#control-plane-components
https://kubernetes.io/docs/concepts/services-networking/service/#external-ips

cluster network, an IP address conflict occurs87.
After MetalLB is deployed and configured, it will automatically assign and unassign individual ad-
dresses within the pools’ range to Kubernetes services of type LoadBalancer. Furthermore, a service
deployment may be arbitrarily set to be allocated with a certain IP address, ensuring that it is always
externally accessible with the same IP address. The latter is only possible if the IP address is available
within the range of a MetalLB pool and is not already assigned to another service.
It should be noted that if all available IP addresses have already been allocated, subsequent LoadBalancer
services remain in the pending state until an IP address from a pool becomes available for assignment
or a newer pool is created.

3.2.6.3 External Announcement

Once MetalLB has allocated a pool’s IP address to a LoadBalancer service type, the network outside
Kubernetes, i.e. the Internal Network, must be aware that the IP address has been assigned and is
accessible (”lives” in the network) for any kind of communication to take place. To accomplish this,
MetalLB deploys a DaemonSet88 component called Speaker on each cluster node, which is in charge
of IP address announcements on the network89.
MetalLB supports two external IP announcement modes90, which are explained below and are based
on common networking or routing protocols.

• BGP mode91

In BGP mode, all nodes in the cluster establish BGP92 (Border Gateway Protocol) peering sessions
with adjacent routers and advise them on how to forward traffic to the service IPs.
Due to the requirement of BGP-capable routers and a complex configuration, this mode cannot
be employed in cluster implementation. Furthermore, BGP is utilized to link with various and
external Autonomous Systems93 (AS).

• Layer 2 mode94

In Layer 2 mode, one Kubernetes cluster node takes ownership of the LoadBalancer service
and utilizes standard address discovery protocols (ARP for IPv4, NDP for IPv6) to make the IP
address visible on the local network. From the perspective of the network LAN, the announcing
node’s NIC has multiple IP addresses assigned to it.
The Kubernetes kube-proxy95 component running on the corresponding node manages all net-
work traffic for a service IP, which subsequently forwards the request to one of the service’s pods.
Layer 2 mode does not employ a true load balancer method, but rather a failover strategy in
which a new node replaces the current leader node if it fails for any reason.

Due to the inability of using BGP mode and its inherent universality to operate on any Ethernet net-
work without the need for additional hardware, configurations, or routers, the cluster implementation
is completely based on Layer 2 mode. Furthermore, because Layer 2 mode, as the name implies,
operates directly on Layer 2 of the ISO/OSI model, it is fully compatible with the cluster’s Internal
Network Architecture (see section 2.2.2). Both MetalLB and the Internal Network’s Layer 2 capabil-
ities meet the criteria for a fully functional Wake-on-LAN (WoL) feature (see section 3.3.1.7).

Figure 3.13 depicts an example schema of a MetalLB cluster with distinct Kubernetes namespaces,
services, and pods, as well as network connections.

87https://www.linksys.com/support-article?articleNum=132159
88https://kubernetes.io/docs/concepts/workloads/controllers/daemonset
89https://metallb.universe.tf/installation
90https://metallb.universe.tf/concepts/#external-announcement
91https://metallb.universe.tf/concepts/bgp
92https://wikipedia.org/wiki/Border_Gateway_Protocol
93https://wikipedia.org/wiki/Autonomous_system_(Internet)
94https://metallb.universe.tf/concepts/layer2
95https://kubernetes.io/docs/concepts/overview/components/#kube-proxy

42

https://www.linksys.com/support-article?articleNum=132159
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset
https://metallb.universe.tf/installation
https://metallb.universe.tf/concepts/#external-announcement
https://metallb.universe.tf/concepts/bgp
https://wikipedia.org/wiki/Border_Gateway_Protocol
https://wikipedia.org/wiki/Autonomous_system_(Internet)
https://metallb.universe.tf/concepts/layer2
https://kubernetes.io/docs/concepts/overview/components/#kube-proxy

Source: https://docs.openshift.com/container-platform/latest/networking/metallb/about-metallb.html

Figure 3.13: MetalLB cluster with distinct Kubernetes namespaces, services, and pods, as well as
network connections

3.2.7 Prometheus

Source: https://prometheus.io

Figure 3.14: Prometheus
logo

Prometheus96 is an Open Source system that is specifically designed for
monitoring and alerting. It is the only system that Kubernetes natively
supports and the de facto standard across the Cloud Native ecosystem.
Prometheus joined CNCF in 201697 as the second hosted project with a
Graduated maturity level, only after Kubernetes itself. Prometheus has no
mapping to a cluster component, and the architecture overview indicates

no monitoring component at all. This is because having Prometheus deployed and continually operat-
ing in the cluster is a choice of the organization operating the cluster rather than a hard necessity; even
if the Metrics Server is required on each Node. Furthermore, Prometheus may be deployed outside of
the cluster environment and configured to access node metrics from the external network, or it can
be run exclusively for certain periods, allowing monitoring of the cluster for testing or performance
evaluation. Nonetheless, Prometheus remains an important tool for monitoring and analyzing how
the cluster is behaving, which is why it is specified as a dependency and is also included in the final
archive bundle.

As previously stated, Prometheus’ primary function is to collect metrics data generated by ex-
porters and query/interpolate this data. Moreover, Prometheus can monitor itself since, like Node
Exporter, it provides its metrics via an HTTP endpoint. There is a plethora of available exporters
and possible integrations98. In addition to the default exporter installed on each node in the cluster
implementation, an organization managing the cluster can choose to add as many exporters as the
number of components and applications running on it, resulting in a better, clearer, and finer-grained
overview of the entire cluster status both in real-time and over a period. For example, in addition to the
Database component, it is possible to install its corresponding exporter, which allows the monitoring
of Database metrics such as health, performance and resource usage.

96https://prometheus.io
97https://www.cncf.io/projects/prometheus
98https://prometheus.io/docs/instrumenting/exporters

43

https://docs.openshift.com/container-platform/latest/networking/metallb/about-metallb.html
https://prometheus.io
https://prometheus.io
https://www.cncf.io/projects/prometheus
https://prometheus.io/docs/instrumenting/exporters

3.2.7.1 Features

Prometheus has several features99, but the two most essential for the cluster implementation are
described below:

1. A multidimensional data model that contains time series data that is uniquely identified by
metric name and optional key-value pairs known as labels. Time series data are streams of
timestamped values from the same metric and set of labeled dimensions100.

(a) Metrics

The metric name, which is sometimes complemented by a short description (# HELP ...),
defines the overall system characteristic being monitored.
For example, node_memory_MemFree_bytes metric defines the total amount of physical memory
(in bytes) that is not in use.
Each metric has a distinct type101 (# TYPE ...). There is a total of four different types of
metrics, which are briefly outlined below:

i. Counter102

A cumulative metric that depicts a single monotonically increasing counter, the value
of which can only increase or be reset to zero.

ii. Gauge103

A metric that represents a single numerical value that can vary arbitrarily up and
down.

iii. Histogram104

Samples and counts observations in variable buckets, providing also the total sum of
all observed values.

iv. Summary105

Similar to Histogram type, it also calculates configurable quantiles over a time window.

(b) Labels

Labels allow Prometheus’ dimensional data model: each given combination of labels for
the same metric name identifies a unique dimensional instantiation of that metric. These
dimensions can be used to filter and aggregate data by the PromQL query language.
For example, node_cpu_seconds_total{cpu="0",mode="idle"}, determines the number of seconds
spent in idle mode by CPU core 0.

2. Prometheus includes a functional and extensible query language known as PromQL106 (Prometheus
Query Language) that allows the selection and aggregation of time series data in real-time. The
outcome of an expression can be shown as a graph, tabulated data, or consumed by external
systems (such as Grafana, see section 3.2.7.2) via the HTTP API.

Two examples of PromQL queries that have been widely used for cluster monitoring are shown
below. Note how the various metrics and labels are used for filtering and aggregation.

Listing 3.6 illustrates an example of a PromQL query to obtain the overall CPU usage in percent (0
to 100). Because the metric node_cpu_seconds_total is of type counter, the considered value is limited
to the last one minute (1m).

100 * (avg without (mode, cpu) (1 - rate(node_cpu_seconds_total{mode="idle"}[1m])))

Listing 3.6: PromQL query to obtain overall CPU usage in percent

99https://prometheus.io/docs/introduction/overview/#features
100https://prometheus.io/docs/introduction/overview
101https://prometheus.io/docs/concepts/metric_types
102https://prometheus.io/docs/concepts/metric_types/#counter
103https://prometheus.io/docs/concepts/metric_types/#gauge
104https://prometheus.io/docs/concepts/metric_types/#histogram
105https://prometheus.io/docs/concepts/metric_types/#summary
106https://prometheus.io/docs/prometheus/latest/querying/basics

44

https://prometheus.io/docs/introduction/overview/#features
https://prometheus.io/docs/introduction/overview
https://prometheus.io/docs/concepts/metric_types
https://prometheus.io/docs/concepts/metric_types/#counter
https://prometheus.io/docs/concepts/metric_types/#gauge
https://prometheus.io/docs/concepts/metric_types/#histogram
https://prometheus.io/docs/concepts/metric_types/#summary
https://prometheus.io/docs/prometheus/latest/querying/basics

Listing 3.7 illustrates an example of a PromQL query to obtain the amount of memory usage in
percent (0 to 100).

100 * ((node_memory_MemTotal_bytes - node_memory_MemFree_bytes) / node_memory_MemTotal_bytes)

Listing 3.7: PromQL query to obtain the amount of memory usage in percent

3.2.7.2 Grafana

Source: https://grafana.com

Figure 3.15: Grafana logo

Prometheus is frequently used in conjunction with Grafana107, an interac-
tive data visualization platform.
Prometheus collects metrics and provides the sophisticated PromQL query
language; Grafana then translates these metrics and/or query results into
relevant charts and graphs that may be consolidated into one or more
dashboards.
It should be noted that Grafana is not considered a dependency in the

cluster implementation and therefore is not distributed in the release archive bundle.

3.2.8 Management

To create a cluster release bundle, all of the dependencies must be managed and downloaded (see
section B.3). Furthermore, as stated in previous sections, having all of the required dependencies
locally during cluster initialization without the need for an internet connection is essential for an
Air-Gap environment but can also be beneficial for speeding up the overall installation time because
there is no need to download them from the Internet. It should be noted that if the cluster is made
up of many systems with various architectures, such as amd64 or arm64, the necessary dependencies
must be downloaded for all architectures, otherwise, the installation procedure will fail with an error.
The management of dependencies should be as straightforward as possible, with as few manual tasks
as possible. As a result, the entire procedure has been entirely automated using a simple configuration
file called dependencies.config.yaml and detailed in the section 3.2.8.1, as well as a POSIX script
called dependencies.sh and explained in section 3.2.8.2.
It should be mentioned that dependencies management has been designed to be as compatible as
possible, with no restrictions on what dependency and version must be downloaded. The procedure is
compatible with any publicly accessible software on GitHub108 that has at least one release109. Because
compatibility with just GitHub is due to certain API calls, future versions will also include support
for custom solutions as well as both GitLab110 and Bitbucket111.

3.2.8.1 Configuration

The dependencies management configuration file, dependencies.config.yaml, is written in YAML112

format.
The attributes for each dependency declared as a root object, are defined in table 3.2.

Name Type Description

url string113 The URL of the dependency project’s GitHub repository.

assets string sequence A list of assets (files) to be downloaded.
Regular Expression114 may be used in the asset string name.
This is especially useful for matching files that may not al-
ways have the same name across releases. Node Exporter and
Prometheus, for example, always include the version name in
each release asset.

107https://grafana.com/grafana
108https://github.com
109docs.github.com/repositories/releasing-projects-on-github/managing-releases-in-a-repository
110gitlab.com
111https://bitbucket.org
112https://yaml.org

45

https://grafana.com
https://grafana.com/grafana
https://github.com
docs.github.com/repositories/releasing-projects-on-github/managing-releases-in-a-repository
gitlab.com
https://bitbucket.org
https://yaml.org

releases string sequence115 A list of releases (versions) to download.
All of the files specified in the assets attribute are downloaded
for each release. As a result, the specified release values must
be precisely selected, otherwise, the number and total size of
the downloaded files might quickly become unmanageable. For
example, if three releases and five assets are provided, the
total number of files downloaded is 15: 5 for each release.
All assets are saved in the same directory as the corresponding
release name.
A special release value named latest is supported, which de-
notes the most recent available release version. A particular
GitHub API116 request is used to obtain the corresponding ver-
sion name of a latest release.

files string mapping117 A list of extra files to be downloaded.
Each file has a name (key) and a string URL (value). A file is
downloaded from the specified URL and saved with the specified
name. Because these files lack a matching release value, they are
saved in the directory with the same name as the dependency
root name (the same where release directories are saved)

Table 3.2: Dependency attributes

Listing 3.8 displays the content of the dependencies configuration file, dependencies.config.yaml118,
which is used in the cluster implementation. It is worth noting the use of the latest value in the
releases attribute, as well as the use of Regular Expression in the prometheus and node exporter

assets attribute. Furthermore, the files attribute specifies the corresponding LICENSE file for each
dependency.

1 ---

2 autoscaler:

3 url: 'https://github.com/carlocorradini/autoscaler'
4 assets:

5 - 'cluster-autoscaler.amd64.tar.gz'
6 - 'cluster-autoscaler.arm64.tar.gz'
7 releases:

8 - 'latest'
9 files:

10 LICENSE: 'https://raw.githubusercontent.com/carlocorradini/autoscaler/master/LICENSE'
11

12 ---

13 k3s:

14 url: 'https://github.com/k3s-io/k3s'
15 assets:

16 - 'k3s'
17 - 'k3s-arm64'
18 - 'k3s-airgap-images-amd64.tar.gz'
19 - 'k3s-airgap-images-arm64.tar.gz'
20 releases:

21 - 'latest'
22 - 'v1.26.1+k3s1'
23 - 'v1.25.6+k3s1'
24 files:

25 LICENSE: 'https://raw.githubusercontent.com/k3s-io/k3s/master/LICENSE'

113https://yaml.org/spec/1.2.2/#10113-generic-string
114https://wikipedia.org/wiki/Regular_expression
115https://yaml.org/spec/1.2.2/#10112-generic-sequence
116https://docs.github.com/rest
117https://yaml.org/spec/1.2.2/#10111-generic-mapping
118https://github.com/carlocorradini/reCluster/blob/main/dependencies/dependencies.config.yaml

46

https://yaml.org/spec/1.2.2/#10113-generic-string
https://wikipedia.org/wiki/Regular_expression
https://yaml.org/spec/1.2.2/#10112-generic-sequence
https://docs.github.com/rest
https://yaml.org/spec/1.2.2/#10111-generic-mapping
https://github.com/carlocorradini/reCluster/blob/main/dependencies/dependencies.config.yaml

26 install.sh: 'https://raw.githubusercontent.com/k3s-io/k3s/master/install.sh'
27

28 ---

29 node_exporter:

30 url: 'https://github.com/prometheus/node_exporter'
31 assets:

32 - 'node_exporter-[0-9]+\.[0-9]+\.[0-9]+\.linux-amd64.tar.gz'
33 - 'node_exporter-[0-9]+\.[0-9]+\.[0-9]+\.linux-arm64.tar.gz'
34 releases:

35 - 'latest'
36 - 'v1.5.0'
37 files:

38 LICENSE: 'https://raw.githubusercontent.com/prometheus/node_exporter/master/LICENSE'
39 install.sh: 'https://raw.githubusercontent.com/carlocorradini/node_exporter_installer/main/

install.sh'
40

41 ---

42 prometheus:

43 url: 'https://github.com/prometheus/prometheus'
44 assets:

45 - 'prometheus-[0-9]+\.[0-9]+\.[0-9]+\.linux-amd64.tar.gz'
46 - 'prometheus-[0-9]+\.[0-9]+\.[0-9]+\.linux-arm64.tar.gz'
47 releases:

48 - 'latest'
49 - 'v2.42.0'
50 files:

51 LICENSE: 'https://raw.githubusercontent.com/prometheus/prometheus/main/LICENSE'

Listing 3.8: Content of dependencies configuration file

3.2.8.2 Script

A POSIX script named dependencies.sh119 is used to automate all dependencies-related procedures.
Its primary function is to read the dependencies configuration file and synchronize (download) the
dependencies listed therein.
The script requires some coreutils package’s utility programs and the yq application to correctly
handle YAML file and syntax.
Dependencies’ script behavior is customizable by using argument flags, which begin with a double
dash followed by the property name and an optional value (--NAME [VALUE]).
The accepted configuration parameters are listed in the table below.

Name Description Default Value

config-file Path to the dependencies configuration file
(<FILE>).
Both relative and absolute paths are supported.
It should be noted that the configuration file name
does not have to be dependencies.config.yaml,
but may be any name and extension. The sole
condition is that it must be in YAML format and
that the attributes structure is respected.

dependencies.config.yaml

sync Synchronize all dependencies specified in the config-
uration file.
Dependencies are saved in the current working di-
rectory.
If a file is already present in the respective directory,
it is not downloaded (skipped).

119https://github.com/carlocorradini/reCluster/blob/main/dependencies/dependencies.sh

47

https://github.com/carlocorradini/reCluster/blob/main/dependencies/dependencies.sh

sync-force The same as --sync, except that all dependencies
are downloaded even if they are already present lo-
cally.
The downloaded file replaces the local one (if exists).

log-level Logging level (<LEVEL>).
Attachment C provides additional information re-
garding logging and logging levels.
The following logging levels are supported (listed in
descending order of importance):

5 fatal

4 error

3 warn

2 info

1 debug

info

help Display a help message and terminate (successfully).

Table 3.3: Dependencies script parameters

To synchronize (force) all of the dependencies listed in the configuration file with the script, just
execute: ./dependencies.sh --sync-force

3.3 Server
Server120 is a completely custom implementation that manages all low-level cluster operations, such
as turning on and off nodes, as well as user operations, such as authentication and authorization. The
server is written entirely in TypeScript121, a strongly typed programming language that is compiled/-
transpiled122 to JavaScript, and executed by the Node.js runtime. When dealing with particular
cluster processes, it has a strong policy of resource-waste minimization, attempting to reduce overall
cluster power consumption while also enhancing the resource utilization of active nodes. It is intended
to be completely interoperable with a Kubernetes cluster composed of heterogeneous systems. It pro-
vides a rich, type-safe, and secure GraphQL API (see section 3.3.2) that can be utilized manually by
administrators and basic users or automatically by scripts and other cluster components, such as the
Cluster Autoscaler (see section 3.4.3). Server, as the name implies, has a direct mapping to the cluster
architecture’s Server component.
To query, monitor (see section 3.3.5), and manipulate the state of the Kubernetes cluster, Server imple-
mentation mainly relies on the Kubernetes API123. The Kubernetes API server, which is operating on
a Controller node, listens on port 6443 and is secured with TLS. TLS certificates can be signed using
a private Certificate Authority (CA) or with a Public Key Infrastructure (PKI) linked to a well-known
CA. Because the cluster implementation supports deployment in an Air-Gap environment, without
any connection to an external network, and leveraging a fully-fledged certificate infrastructure for
most of the conceivable use-case scenarios might be regarded a waste of resources and an unnecessary
effort, it is recommended to utilize the solution with the private Certificate Authority, which is also the
default one. If the Kubernetes cluster implementation is configured to work with a certificate signed
by a private CA, then any K8s client, including the one employed by the Server, must have a local
copy of the certificate, which is available within the corresponding kubeconfig file generated by the
Controller, to mutually trust the connection (client-controller and controller-client) and be confident
that it is not intercepted. The overall cluster implementation is meant to operate with a certificate
signed by a private CA by default, hence the Server requires a copy of the kubeconfig file. If the

120https://github.com/carlocorradini/reCluster/tree/main/server
121https://www.typescriptlang.org
122https://wikipedia.org/wiki/Source-to-source_compiler
123https://kubernetes.io/docs/concepts/security/controlling-access

48

https://github.com/carlocorradini/reCluster/tree/main/server
https://www.typescriptlang.org
https://wikipedia.org/wiki/Source-to-source_compiler
https://kubernetes.io/docs/concepts/security/controlling-access

Kubernetes Server and the Server are deployed on the same node, as is the case with reCluster, the
latter is completely automated by the installation script (see section 3.5).
The server resource-waste reduction strategy is maintained automatically and in conjunction with the
Cluster Autoscaler component implementation, without any human/physical interaction. As stated
in chapter 2, the Server and Cluster Autoscaler are required and operate as a single entity. Because it
only has a low-level understanding of the cluster, the Server does not know when to scale (automat-
ically) without the Cluster Autoscaler, which monitors the overall cluster workload and each active
node resource utilization. Vice versa, without the Server, which has global low-level knowledge of the
whole cluster, including active and inactive nodes, the Cluster Autoscaler only knows when to scale
nodes up or down but not how to do so.

This section is split into five segments, each of which requires the knowledge provided by the
previous segment to be completely understood. The first segment depicts the Database structure, its
tables, and their relationships. The schema, which contains the core knowledge of the cluster and users,
is constantly updated and persistently stored. The second segment depicts the GraphQL API and its
queries (queries and mutations). The API provides advanced knowledge, the foundation of which is
the database and its schema, in that certain queryable data are not available in the database but are
calculated using multiple raw data from persistent storage. The latter is prominent throughout the
autoscaling procedure. Certain queries are secured by authentication, authorization, or both, while
others are exposed to any entity making the request (users, nodes, etc...). The third segment focuses
on the autoscaling technique, illustrating how nodes are automatically powered on (from an inactive
to active state) or powered off (from an active to inactive state). The latter are fully automated
procedures that are triggered via specific GraphQL queries and consumed by either automatic entities
like the Cluster Autoscaler or human entities like an administrator. The fourth segment demonstrates
how the server continuously monitors the Kubernetes cluster using a specialized node informer that
checks to see whether a node resource is added, deleted, or updated. The latter aids in keeping the
cluster’s knowledge consistent and up to date by using the Kubernetes heartbeat and resource systems.
The final segment is about server configuration: how it may be configured and the many available
parameters.

3.3.1 Database

This section is concerned with the Database, its structure (schema), and the interactions between it
and the Server.
To interface with the Database, the Server implementation does not directly involve any raw SQL
queries but instead depends on a kind of middleware layer that automatically translates any Database
specific TypeScript functions and data structures into raw SQL queries and vice versa. Section 3.3.1.1
explains the latter, as well as the procedures and technologies involved.
Section 3.3.1.2 depicts the Database schema, which is a pure mapping of the cluster’s low-level knowl-
edge in the form of raw data, its many nodes (both active and inactive), and the various registered
users. The schema not only illustrates how the various data are defined and organized in the Database,
but it also reflects the cluster’s knowledge and what data and information constitute it.

3.3.1.1 Object-Relational Mapping

Prisma ORM124125 manages all database-related operations in the Server implementation, removing
the need for raw SQL queries and replacing them with more natural, easy-to-use, and maintainable
TypeScript functions and data structures.
Consider a database with a table that represents the nodes in the cluster and has a structure similar
to the one shown in section 3.3.1.2. The name and memory properties of the node with the identifier
e2b87848-bba0-46d5-923b-403f7141564f should be selected. The raw SQL query looks like the
following code:

1 const id = "e2b87848-bba0-46d5-923b-403f7141564f";

2 const result = await query("SELECT name, memory FROM node WHERE id = $1", [id]);

124https://wikipedia.org/wiki/Object-relational_mapping
125https://www.prisma.io

49

https://wikipedia.org/wiki/Object-relational_mapping
https://www.prisma.io

Listing 3.9: Raw SQL query to retrieve the name and memory attributes of the node with the identifier
e2b87848-bba0-46d5-923b-403f7141564f

In contrast, the same query using the Prisma ORM looks like the following code:

1 const id = "e2b87848-bba0-46d5-923b-403f7141564f";

2 const result = await prisma.node.findUnique({

3 select: {

4 name: true,

5 memory: true

6 },

7 where: {

8 id: id

9 }

10 });

Listing 3.10: Prisma ORM query to retrieve the name and memory attributes of the node with the
identifier e2b87848-bba0-46d5-923b-403f7141564f

Take note of the differences, particularly how the ORM query is simpler, type-safe, and does not
directly involve any SQL code but rather pure programming language primitives.
ORMs are not the only tool for interfacing with a Relational Database; alternative options, such as Raw
SQL and SQL query builders, are available; nonetheless, ORMs provide the finest balance between
application productivity and database control. Raw SQL provides complete control over database
operations, but productivity suffers since interacting with raw SQL in code is time-consuming, error-
prone, and produces a lot of overhead and maintainability issues. SQL query builders maintain a
high level of control over database operations and give somewhat higher productivity, but they do it
by relying on logical thinking in SQL rather than programming objects, functions, and primitives126.
Figure 3.17 depicts the productivity vs control tradeoff of the various database tools, including Prisma.

Source: https://www.prisma.io

Figure 3.16: Prisma logo

Prisma is an open-source next-generation ORM that defines the
database data model structure using a Prisma Schema file127128, which
is then used to construct the mapping between the database and the pro-
gramming language with a rich and user-friendly API. Furthermore, be-
cause Prisma is not designed as a standard ORM but instead employs an
intermediary Schema file, it can improve overall productivity and control

over traditional ORMs129. Figure 3.17 reflects the latter.

Source: https://www.prisma.io/docs/concepts/overview/why-prisma

Figure 3.17: Productivity vs. Control tradeoff between various database tools

126https://www.prisma.io/docs/concepts/overview/why-prisma
127https://www.prisma.io/docs/concepts/components/prisma-schema
128https://github.com/carlocorradini/reCluster/blob/main/server/prisma/schema.prisma
129https://www.prisma.io/docs/concepts/overview/what-is-prisma

50

https://www.prisma.io
https://www.prisma.io/docs/concepts/overview/why-prisma
https://www.prisma.io/docs/concepts/overview/why-prisma
https://www.prisma.io/docs/concepts/components/prisma-schema
https://github.com/carlocorradini/reCluster/blob/main/server/prisma/schema.prisma
https://www.prisma.io/docs/concepts/overview/what-is-prisma

3.3.1.2 Schema

This section depicts and describes the database schema structure, as well as how the various entities
(tables) are connected. Figure 3.18 displays the overall high-level representation of the database
schema as an Entity Relationship Model130 (ERM), where represents an Entity, an Enum, and
— a relation between two entities. An Entity has a header and a body, with the header representing
the entity’s name and the body representing the attributes that make it up. The body is divided
into three columns: the first column provides the attribute names, the second column is the type
of the related attributes, and the third column contains extra information and context about the
corresponding attribute (e.g. PK indicates that the attribute is a Primary Key131 of the entity). An
enum has the same form as an entity, with a header and a body, but the body has a single column
that represents all of the Enum’s possible values.
Following the schema, each entity is extensively described, as are the attributes that comprise it, as
well as the relation(s) cardinality and why it is important.
This part’s information is crucial for gaining a better understanding of the data that the server requires
and the installation script (see section 3.5) collects from a node. Additionally, the latter is necessary
for comprehending the raw data provided and processed by the GraphQL API (see section 3.3.2).

130https://wikipedia.org/wiki/Entity-relationship_model
131https://wikipedia.org/wiki/Primary_key

51

https://wikipedia.org/wiki/Entity-relationship_model
https://wikipedia.org/wiki/Primary_key

user

id uuid PK | DEFAULT(UUID())

username text UNIQUE

password text

roles user_role [] DEFAULT([SIMPLE])

permissions user_permission [] DEFAULT([])

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

user_permissionuser_role

ADMIN

SIMPLE

node

id uuid PK | DEFAULT(UUID())

node_pool_id uuid FK

cpu_id uuid FK

name text UNIQUE

roles node_role []

permissions node_permission [] DEFAULT([])

address text UNIQUE

memory bigint

node_pool_assigned boolean DEFAULT(false)

min_power_consumption integer

max_e�ciency_power_consumption integer NULLABLE

min_performance_power_consumption integer NULLABLE

max_power_consumption integer

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

node_role

RECLUSTER_CONTROLLER

K8S_CONTROLLER

K8S_WORKER

node_permission

status

id uuid PK | FK

status node_status

reason text NULLABLE

message text NULLABLE

last_heartbeat timestamptz NULLABLE

last_transition timestamptz

updated_at timestamptz

storage

id uuid PK | DEFAULT(UUID())

node_id uuid FK | UNIQUE(node_id,name)

name text UNIQUE(node_id,name)

size bigint

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

node_status

ACTIVE

ACTIVE_READY

ACTIVE_NOT_READY

ACTIVE_DELETING

BOOTING

INACTIVE

UNKNOWN

interface

id uuid PK | DEFAULT(UUID())

node_id uuid FK | UNIQUE(node_id,name)

name text UNIQUE(node_id,name)

address text UNIQUE

speed bigint

wol wol_�ag [] DEFAULT([])

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

wol_�ag

a

b

g

m

p

s

u

cpu

id uuid PK | DEFAULT(UUID())

name text UNIQUE | UNIQUE(name,vendor,family,model)

vendor cpu_vendor UNIQUE(name,vendor,family,model)

family integer UNIQUE(name,vendor,family,model)

model integer UNIQUE(name,vendor,family,model)

architecture cpu_architecture

�ags text []

cores integer

cache_l1d integer

cache_l1i integer

cache_l2 integer

cache_l3 integer

vulnerabilities text []

single_thread_score integer

multi_thread_score integer

e�ciency_threshold integer NULLABLE

performance_threshold integer NULLABLE

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

cpu_vendor

AMD

INTEL

UNKNOWN

cpu_architecture

AMD64

ARM64

node_pool

id uuid PK | DEFAULT(UUID())

name text UNIQUE

min_nodes integer

auto_scale boolean DEFAULT(true)

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

1

*

1

1

*

*

1

*

Entity

Relation

Enum

Figure 3.18: Database Entity Relationship Model (ERM)

52

3.3.1.3 User

user

id uuid PK | DEFAULT(UUID())

username text UNIQUE

password text

roles user_role [] DEFAULT([SIMPLE])

permissions user_permission [] DEFAULT([])

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

user_permissionuser_role

ADMIN

SIMPLE

The user entity represents all of the cluster’s registered users.
A user can logically be a real person, such as an administrator, or an automation system, such as the
Cluster Autoscaler.
The user entity is currently solely used for authentication and authorization in the GraphQL API.
Certain queries are only available to authenticated users, while others are only available to users
with specified roles and/or permissions, or both. Yet, nothing prevents the future implementation
of additional capabilities or the extension of the entity with extra attributes and/or relationships
with other (new) entities. Because of the latter, this entity differs from the others in that it exists
independently of other entities.
The user entity attributes are as follows:

• id

Uniquely identify (PK) a user record.
The attribute is of type Universally Unique Identifier132 (UUID) version 4, and it is a 128-
bit alphanumeric value generated by a (secure) random number generator. Unless otherwise
specified, the UUID value is generated automatically whenever a new user record is added to
the entity.
The UUID type is widely used in database schema to uniquely identify all entity records.

• username

User’s username.
A string of characters that uniquely (UNIQUE) identifies a user record.
The username and id attributes are logically interchangeable since they both uniquely iden-
tify the same user record. Yet, memorizing a personalized and simple sequence of characters
(username) is significantly simpler than remembering a 128-bit alphanumerical (UUID).
During the authentication method in the GraphQL API, the username attribute is utilized in
combination with the password attribute to guarantee that the user exists and is who it claims
to be.

• password

User’s password.
A (secret) string of letters, numbers, and symbols used to identify the user during the authenti-
cation procedure.
The password has rigorous criteria that can be changed in the server configuration (see section
3.3.6): A minimum of eight characters (inclusive), one capital letter, one number, and one sym-
bol are required.
The password stored in the database is not in plain text; rather, it is derived from the original
one provided by the user during the registration process using a password-hashing function133.
The password-hashing function employed in the implementation is bcrypt134. which is based
on the Blowfish135 cipher and includes a salt136 (random data used as an additional input).
The bcrypt function is an industry-standard that can withstand brute-force attacks and other

132https://wikipedia.org/wiki/Universally_unique_identifier
133https://wikipedia.org/wiki/Password-hashing_function
134https://wikipedia.org/wiki/Bcrypt
135https://wikipedia.org/wiki/Blowfish_(cipher)
136https://wikipedia.org/wiki/Salt_(cryptography)

53

https://wikipedia.org/wiki/Universally_unique_identifier
https://wikipedia.org/wiki/Password-hashing_function
https://wikipedia.org/wiki/Bcrypt
https://wikipedia.org/wiki/Blowfish_(cipher)
https://wikipedia.org/wiki/Salt_(cryptography)

threats[29].
It should be noted that, for security reasons, the password attribute is never returned by the
GraphQL API (there is no mapping at all in the GraphQL schema) or by default by the Prisma
ORM unless specifically provided in the select object.

• roles

User’s roles.
Roles are used to logically group users into established categories, with various roles indicating
varying levels of privilege.
The roles attribute is of type array ([]) of user role enum since a user might have multi-
ple/different responsibilities at the same time.
The user role enum has the following possible values/constants:

– ADMIN

Identifies administrators and/or automation systems.
It is the highest currently available role that permits the execution of any operation (query).

– SIMPLE

Identifies users who do not have any extra privileges.
When a new user is added to the database, the role assigned by default is SIMPLE.

It should be noted that a SIMPLE user cannot perform any operations that an ADMIN can’t.
Also, the roles attribute must always include at least one value.

• permissions

User’s permissions.
Identifies the possible actions that a user is allowed to execute.
The permissions attribute is directly tied to the roles attribute and the context in which a
query is executed. For example, two ADMIN users can change data on a node in the cluster (both
have the UPDATE permission), but only the first user can delete a node record from the entity
since it has the DELETE permission, while the second does not.
The type of the attribute is an array of user permission enum since a user might have multi-
ple/different permissions depending on the role(s) and context.
The user permission enum is currently empty (hence the default value as an empty array)
since no queries require rigorous authentication/authorization. Still, future implementations are
completely supported.

• created at

Date and time of creation.
The attribute indicates when the user record was created.
The type is timestamptz137 because it specifies a timestamp that also includes timezone infor-
mation for the database’s deployment location. It should be noted that the timezone is set to
Coordinated Universal Time138 (UTC) by default, therefore it is not tied to a specific timezone
and hence the value may be readily converted to a specific timezone.
The attribute is automatically set thanks to DEFAULT which gets the value from the NOW()

function that returns the current timestamp and timezone.

• updated at

Date and time of the most recent update.
The attribute specifies the most recent timestamp the user record was updated.
The attribute is of type timestamptz.
The value is controlled automatically by the server rather than the database. The latter is owing
to differing database implementations, some of which support the feature natively while others
do not.

137https://www.postgresql.org/docs/current/datatype-datetime.html
138https://wikipedia.org/wiki/Coordinated_Universal_Time

54

https://www.postgresql.org/docs/current/datatype-datetime.html
https://wikipedia.org/wiki/Coordinated_Universal_Time

3.3.1.4 Node

node

id uuid PK | DEFAULT(UUID())

node_pool_id uuid FK

cpu_id uuid FK

name text UNIQUE

roles node_role []

permissions node_permission [] DEFAULT([])

address text UNIQUE

memory bigint

node_pool_assigned boolean DEFAULT(false)

min_power_consumption integer

max_e�ciency_power_consumption integer NULLABLE

min_performance_power_consumption integer NULLABLE

max_power_consumption integer

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

node_role

RECLUSTER_CONTROLLER

K8S_CONTROLLER

K8S_WORKER

node_permission

*

1

*

The node entity represents all of the cluster’s physical nodes, both active and inactive. It holds
critical information about a node, and from this entity, other information like the current status or
the hardware components may be obtained.
Certain GraphQL API queries can only be performed by an authorized node. The node lacks a
password attribute like the user entity, both because it is bad practice keeping the plain password in
the node system and also because it is an entirely new kind of object that must handle the various
operations differently. When the node record is created in the database for the first time, the auth
token (in the user returned when it is successfully authenticated after providing the correct username
and password attributes, see section 3.3.2.2) is returned only once and it cannot be obtained again.
As a result, the auth token is securely stored only in the corresponding node, and if it is lost for any
reason, indicating that the node is faulty or compromised, the only way to retrieve a new token and
perform secure operations on the specific node is to register the node in the cluster again (removing
the old record).
The node entity attributes are as follows:

• id

Uniquely identify (PK) a node record.
The attribute is of type UUID.
The id attribute is related to multiple entities. A node can only have one status (see section
3.3.1.8), and the status record belongs to only one unique node, hence the relation is one (1)
to one (1). A node can have several storages (see section 3.3.1.6), but each storage corresponds
to a single and distinct node, hence the relation is one (1) to many (*). Lastly, like with the
previous relation, a node might have several interfaces (see section 3.3.1.7), but each interface
corresponds to a single and unique node, therefore the relation is one (1) to many (*).

• node pool id

Node pool identifier.
Uniquely identify a node pool record (FK).
The attribute is of type UUID.
When a new node joins the cluster, it is automatically assigned to a node pool (see section 3.3.1.9)
based on its roles and hardware. If there is no node pool for the node, one is automatically
created. The relation is many (*) to one (1), indicating that a node may only be allocated to
one node pool, but a node pool can be assigned to several nodes.

• cpu id

Cpu identifier.
Uniquely identify a CPU record (FK).
The attribute is of type UUID.

55

During the registration phase for a new node in the cluster, it is first verified to determine if the
same CPU type is already registered in the database (see section 3.3.1.5); if not, a new CPU
record is created using the information supplied by the node and then assigned to it.
The relation is many (*) to one (1), indicating that a node may only have one CPU, although
the same CPU can be present on several nodes.

• name

Node’s name.
A string of characters that uniquely (UNIQUE) identifies a node record.
It serves the same purpose as the user entity’s username attribute: it allows users/administrators
to easily identify a node by using a shorter name rather than the 128-bit alphanumerical identifier
(id). As a result, the name and id attributes are interchangeable because they both uniquely
identify the same node entry.
A default value is automatically assigned by the Server during the node registration procedure
and consists of two sections separated by a dot (.). The first section provides a high-level
overview of the node’s role, which can be either Controller or Worker (if a node is both,
Controller is preferred since it has the highest logical importance). The node’s identifier is the
second element. As an example, a node with the id e2b87848-bba0-46d5-923b-403f7141564f

and both roles will be given the name controller.e2b87848-bba0-46d5-923b-403f7141564f.
Because this attribute is only deemed as a helper, its value can be modified by administrators
(via the updateNode GraphQL query) to fit a more appropriate name that better represents the
node in the cluster.

• roles

Node’s roles.
This attribute is nearly similar to that of the user entity, but it is unique to nodes rather than
users. Roles are used to logically categorize nodes, with different roles indicating various degrees
of privilege.
Because a node may have multiple/different responsibilities at the same time, the roles attribute
is of the form array ([]) of node role enum.
The node role enum has the following possible values/constants:

– RECLUSTER CONTROLLER

The corresponding node has an instance of a reCluster component that controls (monitors)
the cluster and thus must be operational at all times.
The Server component is currently the only reCluster component that can be deployed
outside of the K8s environment and needs to be always active.

– K8S CONTROLLER

The node is a Kubernetes Controller that must be maintained functioning at all times.
It must not be autoscaled by the Cluster Autoscaler component and the only entities
authorized to deactivate it are administrators via a specific protected GraphQL query.

– K8S WORKER

The node is a Kubernetes Worker that can be autoscaled by the Server component in
combination with the Cluster Autoscaler component.
It is important to note that if a node is also a Controller, it is not autoscaled.

A node can have multiple roles assigned to it, but the roles attribute must always have at least
one value. A node can be a Kubernetes Controller (K8S CONTROLLER) and Worker (K8S WORKER)
that monitors the K8s cluster but also accepts workload, as well as a reCluster Controller
(RECLUSTER CONTROLLER) that enables physical node autoscaling and provides the GraphQL
API.
The generic Controller component in reCluster is both a Kubernetes Controller and a reCluster
Controller, but not a Worker.

56

• permissions

Node’s permissions.
This attribute is comparable to that of the user entity, but it is specific to nodes rather than
users. The roles attribute and the context in which a query is performed are both directly
related to the permissions attribute. Furthermore, and this is where the permissions in the
node entity differ, it can be used within the node during some predefined actions such as before
termination or after bootstrap.
Because a node may have multiple/different permissions depending on the role(s), context, and
action, the attribute’s type is an array of node permission enum.
Even though the cluster implementation supports it out of the box, there are currently no
available permissions for nodes (hence the empty array as the default value). The latter enables
future implementations to easily add and modify the node permission enum and permissions

attribute without changing the implementation.

• address

Node’s IP address.
The IP address of the node in the Internal Network. There must be no nodes with the same IP
address in the Internal Network. The latter is reflected in the database schema, which specifies
that the attribute value must be UNIQUE, and thus two nodes cannot have the same IP address.
As a result, this attribute can also be used to uniquely distinguish a node record in the nodes
entity.
Because each database implementation has its own specific/custom datatype for encoding an IP
address, the attribute is of type text.
During the downscaling procedure (see section 3.3.4), the node’s IP address is used to establish
an SSH connection (from Server to Node) and remotely terminate the node. Furthermore, the
IP address is available on multiple GraphQL queries and can be used by users or scripts. The
latter is especially helpful when using Prometheus because it requires the IP addresses of the
nodes where the metrics are published to monitor them.
The attribute’s value is constantly updated using the K8s informer provided by the Kubernetes
API (see section 3.3.5). Because of this, the Database and thus the Server always have the most
recent available IP address of the node, even though (technically) it should never change.

• memory

Node’s memory size in bytes.
Because a large amount of memory does not fit into the smaller integer type, the attribute is
of type bigint139.
The unit is in byte because it is the smallest on which memory can be represented (bit unit
is almost useless and the conversion is straightforward). The latter is especially useful when
dealing with conversions (which are directly supported by the GraphQL API) and comparisons
because the unit is always the same and thus no further adjustments are needed.
Every attribute in the database that defines a quantity is represented in its smallest unit. The
installation script or the server automatically converts a larger value to its smallest unit.

• node pool assigned

A Boolean flag that indicates whether the node is allocated to the corresponding node pool.
The attribute is of type boolean, with true indicating that the node is allocated to the node
pool (visible to Kubernetes) and false indicating that the node is not allocated to the node
pool (not visible to Kubernetes).
As previously stated, a node is always related to a node pool upon registration. This attribute
is used in combination with the status entity (see section 3.3.1.8) to decide whether the node
is appropriate for autoscaling. A node in the inactive state that is not allocated to a node
pool can be selected for automatic bootstrap. A node that is not allocated to the node pool
but is in a state other than inactive indicates that the node is bootstrapping, terminating, or

139https://www.postgresql.org/docs/current/datatype-numeric.html

57

https://www.postgresql.org/docs/current/datatype-numeric.html

experiencing a problem.
The default value (DEFAULT) is false because the node has not yet initiated any Kubernetes-
related processes and thus cannot be allocated to the pool when it is registered for the first time
in the cluster. Only when the installation procedure has been completed successfully and the
node sends a request to a specific and protected GraphQL API along with the auth token the
value can be set to true.

• min power consumption

Minimum power consumption in Watt (W).
The node’s minimum power consumption when there is no workload and the running processes
are the bare minimum.
The unit is in Watt rather than a lower one because the device used to measure the power con-
sumption of the different nodes has a minimum sensitivity of Watt (see section 3.5.2). Further-
more, because the read values are always integers (i.e., no decimal point/float), the attribute’s
type can be securely set to integer. To represent that the device can read units well below the
Watt, the type can be set to bigint in different implementations to prevent overflow. Nonethe-
less, because the maximum value of an integer is approximately 2 or 4 billions (depending on
whether the sign can be ignored or not depending on the database implementation) and there
are no systems that utilize this much, the integer type is well above the needs for the imple-
mentation.
The latter affects every attribute in the database that denotes a value for power consumption.

• max efficiency power consumption

Maximum power consumption in Watt (W) when in a power-efficient state.
Modern systems are beginning to include hybrid components that, when under low workload
conditions, are more power efficient, consuming less energy at the expense of performance,
while when under high workload conditions, are more energy-hungry (less power efficient), but
with higher performance and reactiveness. With efficiency and performance cores, the latter is
becoming more prevalent in the CPU ecosystem (see section 3.3.1.5).
Because hybrid systems are still in their early stages and the implementation does not yet
recognize when and how the threshold is reached, causing the system to transition from an
efficiency to a performance state, the attribute is NULLABLE. Furthermore, a NULL value can
determine whether or not the node is hybrid.

• min performance power consumption

Minimum power consumption in Watt (W) when in a performance state.
It is closely related to the previous attribute max efficiency power consumption, but in this
case, the attribute reflects the minimum power consumption when the hybrid system is in the
performance state and has the lowest workload. Simply put, it is the minimum power consump-
tion when switching from a power-efficient to a performance state.
This attribute, like the prior one, is NULLABLE due to the present lack of tools and the effort
needed to monitor hybrid systems, and a NULL value can identify whether or not the node is
hybrid.
It is important to note that whenever the node is registered or updated, both the attributes
max efficiency power consumption and min performance power consumption must be pro-
vided; otherwise, an error is generated and the operation is terminated.

• max power consumption

Maximum power consumption in Watt (W).
The node’s maximum power consumption when under full workload, and thus its hardware
resources are under intense stress.
It is the opposite of the min power consumption attribute, and its value is read when the node
is under extreme stress.

• created at

Date and time of creation.

58

The attribute indicates when the node record was created.
The attribute is of type timestamptz.

• updated at

Date and time of the most recent update.
The attribute specifies the most recent timestamp the node record was updated.
The attribute is of type timestamptz.

3.3.1.5 Cpu

cpu

id uuid PK | DEFAULT(UUID())

name text UNIQUE | UNIQUE(name,vendor,family,model)

vendor cpu_vendor UNIQUE(name,vendor,family,model)

family integer UNIQUE(name,vendor,family,model)

model integer UNIQUE(name,vendor,family,model)

architecture cpu_architecture

�ags text []

cores integer

cache_l1d integer

cache_l1i integer

cache_l2 integer

cache_l3 integer

vulnerabilities text []

single_thread_score integer

multi_thread_score integer

e�ciency_threshold integer NULLABLE

performance_threshold integer NULLABLE

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

cpu_vendor

AMD

INTEL

UNKNOWN

cpu_architecture

AMD64

ARM64

1

The cpu entity contains information about the CPU (Central Processing Unit).
The entity includes the most important information about a particular CPU model obtained from the
Linux Kernel data available at the virtual path /proc/cpuinfo140.
Because a particular CPU model can be present in numerous nodes (as is the case with worker nodes
in reCluster), it is checked before registering a node that the CPU is already listed in the database.
If not, it is registered using the provided information; otherwise, the information is combined with
certain attributes to minimize potential deviation errors (i.e. benchmarks) or to update the attribute
with the most recent known information (i.e. vulnerabilities).
As stated in the node entity, modern Processors, such as Arm Big.LITTLE141 or Intel Performance
Hybrid Architecture142, are beginning to include hybrid technology (heterogeneous processing archi-
tecture) which employs two kinds of processors. The first type of processor is intended for maximum
power efficiency, which reduces overall performance, whereas the second type of processor is designed
for maximum compute performance, which increases power consumption. This form of Processor can
instantly adapt to the variable workload by switching from one type to the other[5][15]. Even though
the latter technology is new and difficult to monitor (understanding when the CPU decides to tran-
sition from one type to the other and vice versa), it is represented in the entity with two dedicated
attributes (efficiency threshold and performance threshold).
The cpu entity attributes are as follows:

• id

Uniquely identify (PK) a CPU record.
The attribute is of the UUID type.
Because multiple nodes can share the same CPU type, the id attribute is associated with the
node entity. As a result, the relation is one (1) to many (*).

140https://www.kernel.org/doc/html/latest/filesystems/proc.html#kernel-data
141https://www.arm.com/technologies/big-little
142https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html

59

https://www.kernel.org/doc/html/latest/filesystems/proc.html#kernel-data
https://www.arm.com/technologies/big-little
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html

• name

CPU name.
The Processor’s common name, including its project name.
The name attribute, like some of the previous attributes, can be used by users and administrators
to easily and uniquely (UNIQUE) identify the processor without relying on one or more complicated
alphanumerical attribute(s).
This attribute, along with the vendor, family, and model attributes, specifically defines a
CPU record (UNIQUE(name,vendor,family,model)). The quadruplet is used during the node
registration procedure to uniquely identify if the same CPU has already been registered. It
should be noted that if a CPU has the same name attribute value but a different value for the
other attributes, registration fails because something in the received data is incorrect.
An example name attribute value is Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, which
identifies the model i7-6700HQ with a basic frequency of 2.60GHz manufactured by Intel

Corporation.

• vendor

CPU vendor identifier.
Identifies the Processor manufacturer identifier.
The attribute is of type cpu vendor enum. It was decided to use a preset set of values because
almost every desktop CPU processor is manufactured by a very limited number of vendors, and
knowing the possible values ahead of time aids in the development of a more powerful and robust
GraphQL API. Nonetheless, if a CPU has a manufacturer that is not available, an UNKNOWN value
exists, enabling future implementations to easily add and support more manufacturers.
The cpu vendor enum has the following possible values/constants:

– AMD

Advanced Micro Devices (AMD).

– INTEL

Intel Corporation.

– UNKNOWN

Identifies an unknown manufacturer.

Due to historical reasons, the original manufacturer identifier string value read from /proc/cpuinfo

is slightly different143: INTEL is GenuineIntel and AMD is AuthenticAMD. They have been
changed/standardized to be more easily identified, with a shorter name as well.

• family

CPU family.
Identifies the Processor’s microarchitectural lineage.
Following the example CPU in the name attribute, it has a family value of 6, indicating that it
is a descendant of the Pentium Pro and thus uses the same microarchitecture.

• model

CPU model.
Identifies the model of the Processor as specified by the manufacturer.
It should be noted that the unique quadruplet (UNIQUE(name,vendor,family,model)) must in-
clude the name attribute because the other three attributes (vendor, family, model) distinguish
only a collection of processors rather than a single specific one.
Following the example CPU in the name attribute, it has a model value of 94 indicating that it
is a Skylake generation (model) Processor.

• architecture

CPU architecture.
Identifies the Processor Instruction Set Architecture implementation.

143https://wikipedia.org/wiki/CPUID

60

https://wikipedia.org/wiki/CPUID

The attribute is of type cpu architecture enum. The possible values reflect the CPU archi-
tectures supported by the cluster. The latter is critical because some components only support
specific architectures, and downloaded dependencies ignore files that are not present in the con-
figuration (commonly unsupported architectures). It should be noted that the installation script
detects if it is operating on an unsupported architecture. Nonetheless, the verification occurs
also in the GraphQL API during the registration process.
The cpu architecture enum has the following possible values/constants:

– AMD64

64-bit version of the x86 instruction set.
This architecture is also known as x64, x86 64, x86-64, and Intel 64.

– ARM64

64-bit extension of the ARM architecture family.
This architecture is also known as AArch64.

It should be noted that the names of the enum values are subjective, and thus they can be
(easily) changed to better fit the organization administering the cluster’s favored choice.

• flags

CPU feature flags.
Determines the features that the Processor implements (identified by a distinct flag name). One
example is the fpu (floating-point unit) flag, which indicates that the CPU has a dedicated
coprocessor for working with floating-point numbers.
The attribute is of the type array ([]) of text, and it contains all of the feature flags. The latter
enables a robust and complex GraphQL API for filtering and searching particular CPUs with a
specified set of flags.
An application can be built to support a particular set of feature flags (normally improving
overall performance thanks to compiler optimizations) and then scheduled only on worker nodes
whose Processor implements these flags. The selection of nodes is based solely on the node(s)
identification number (id attribute) that is available in the Kubernetes environment under the
label recluster.io/id=<ID>.

• cores

CPU core count.
Almost every modern CPU is a multi-core processor which combines multiple processing units
(two or more) to enable parallel work. This attribute indicates how many core units the CPU
has.
It should be noted that this value takes into consideration the CPU’s multithreading capability,
so it is common for this value to be twice the real physical number of cores.
Following the example CPU in the name attribute, the attribute has a value of 8, even though
the actual physical cores are 4.

• cache l1d

CPU L1d (data) cache size in bytes (B).
Because of their small sizes, all cache attributes are of the type integer rather than bigint.

• cache l1i

CPU L1i (instructions) cache size in bytes (B).

• cache l2

CPU L2 cache size in bytes (B).

• cache l3

CPU L3 cache size in bytes (B).

• vulnerabilities

Known CPU vulnerabilities.

61

A collection of known vulnerabilities that affect the Processor.
Because the Processor is vulnerable to numerous vulnerabilities, the attribute’s type is an array
([]) of text. If the CPU is already registered, the previous value of the vulnerabilities

attribute is combined with the new value obtained during the registration procedure, with the
result that if newer vulnerabilities are discovered, the database and server components are im-
mediately updated with the information. Furthermore, because it is an array type, the GraphQL
API allows advanced filtering and searching.
The vulnerabilities attribute can be used to evaluate applications on known vulnerable dedi-
cated nodes. The latter is particularly helpful in an offensive security class, where students can
experiment with various vulnerabilities to take control of the node or execute arbitrary code.

• single thread score

CPU single-thread score.
This attribute indicates the performance score of a single CPU core.
It should be noted that the evaluation, as well as the final score for this attribute and multi thread score

attribute, are carried out using the sysbench application (see section 3.5.1)

• multi thread score

CPU multi-thread score.
This attribute indicates the performance score of all CPU cores combined.
It should be noted that hyperthreading capability is taken into consideration, and the tests are
performed on highly parallelizable algorithms.

• efficiency threshold

CPU power-efficiency threshold (inclusive).
The workload threshold value (upper) beyond which it is no longer certain that the Processor
will stay in a power-efficient condition.
The threshold value is a number between 1 (inclusive) and 99 (inclusive), where 1 indicates that
the CPU is executing at 1% of its total capacity (almost idle) and 99 indicates that the CPU is
operating at 99% of its total capacity (full load).
Due to the difficulty of monitoring the threshold value, the attribute allows a NULL value
(NULLABLE).

• performance threshold

CPU performance threshold (inclusive).
The workload threshold value (lower) beyond which it is no longer certain that the Processor
will stay in a performance condition.
By combining the attributes efficiency threshold and performance threshold, a workload
range is obtained that indicates an area of uncertainty where the Processor can transition from
one state to the other or remain in the current one. For example, if a CPU has the attribute
efficiency threshold set to 45 and the attribute performance threshold set to 55, then the
workload range between 45 and 55 (10 workload range) is uncertain, and the Processor can
transition or not.
Due to the difficulty of monitoring the threshold value, the attribute allows a NULL value
(NULLABLE).

• created at

Date and time of creation.
The attribute indicates when the CPU record was created.
The attribute is of the timestamptz type.

• updated at

Date and time of the most recent update.
The attribute specifies the most recent timestamp the CPU record was updated.
The attribute is of the timestamptz type.

62

3.3.1.6 Storage

storage

id uuid PK | DEFAULT(UUID())

node_id uuid FK | UNIQUE(node_id,name)

name text UNIQUE(node_id,name)

size bigint

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

*

The storage entity represents the persistence storage(s) accessible on the associated node.
The information is obtained by reading the block devices identified by the Linux kernel and made
available via the virtual path /sys/block144. Block devices145, such as a Hard Disk, SSD, CD-ROM,
and RAM disk, are distinguished by random access to data organized in fixed-size blocks. Because the
implementation only requires persistent storage(s), the collection of block devices is filtered to retrieve
only Disk(s)/SSD(s) block devices that are not removable devices (i.e. USB flash drive). The latter
is done automatically by the installation script while reading the node information.
A node can have zero or multiple storage devices. Nonetheless, it is usual for a consumer system
to include at least one storage device, and modern (consumer) systems may include a combination
of a Hard Disk (cheap with large capacity but slow) and an SSD (expensive but faster than a Hard
Disk). Using a multi-SSD configuration can significantly improve cluster performance. Furthermore,
if certain nodes have three or more storage devices, Longhorn (see section 3.2.5.3) can utilize them to
create a distributed block storage system.
Even though Sysbench (see section 3.5.1) supports it, the application currently does not support a
scoring system for a storage device that can help determine its performance under various conditions.
The storage entity attributes are as follows:

• id

Uniquely identify (PK) a storage record.
The attribute is of type UUID.

• node id

Node identifier.
Uniquely identify a node record (FK).
The attribute is of type UUID.
A node can have multiple storage devices, but each storage device is associated with one unique
node. As a result, the relation is many (*) to one (1).

• name

Storage name.
The name of the storage device on the associated node. In GNU/Linux, typical storage device
names are sda, sdb, sdc, and so on for Hard Disks/SSDs and nvme0, nvme1, nvme2, and so on
for NVMEs. Nonetheless, the organization in charge of the cluster can choose to modify the
default name by using arbitrary names to better identify the storage device.
Despite its appearance as a helper for users or administrators, this attribute is also used in
conjunction with the node id attribute to uniquely (UNIQUE(node id,name)) identify the storage

144https://www.kernel.org/doc/html/next/filesystems/sysfs.html
145https://linux-kernel-labs.github.io/refs/heads/master/labs/block_device_drivers.html

63

https://www.kernel.org/doc/html/next/filesystems/sysfs.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/block_device_drivers.html

device on the node and to prevent the registration of two devices with the same name on the
same node.

• size

Storage memory size in bytes (B).
The total quantity of memory that the storage device can store.
Because the overall memory of common storage devices is quite large and their counterpart in
bytes is quite massive, the attribute is of type bigint.

• created at

Date and time of creation.
The attribute indicates when the storage record was created.
The attribute is of type timestamptz.

• updated at

Date and time of the most recent update.
The attribute specifies the most recent timestamp the storage record was updated.
The attribute is of type timestamptz.

3.3.1.7 Interface

interface

id uuid PK | DEFAULT(UUID())

node_id uuid FK | UNIQUE(node_id,name)

name text UNIQUE(node_id,name)

address text UNIQUE

speed bigint

wol wol_�ag [] DEFAULT([])

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

wol_�ag

a

b

g

m

p

s

u

*

The interface entity depicts the network interface(s) accessible within the cluster’s Internal Network
that are associated with the node.
The ip146 command/application is used to obtain a node’s available network interfaces (ip -details

link show). However, the returned list contains both logical interfaces (such as lo147) and physical
interfaces (such as eth0 or wlan0), and must be filtered to retrieve only the physical one. The latter
action is performed automatically by the installation script that discards all network interfaces that
have the info kind information object and is of type loopback.
A physical interface is a Network Interface Card (NIC) that is installed on the node and can thus be
used to acquire information about the NIC as well as be configured to modify some key parameters
(i.e. Wake-on-Lan flags) to function properly in the cluster environment. The information obtained is
critical for understanding which nodes are available for automated bootstrapping by the Server (see
section 3.3.3) and to which specific physical address (MAC address) the magic wake-up message must
be sent.
A node must have at least one NIC to communicate with/from it. The latter verification is done
by both the installation script and the Server component when the registration query is executed.
Nonetheless, (almost) every system is equipped with at least one NIC and, if possible/needed, can
have also extra NICs. It is standard practice in data centers and almost every enterprise environment
to have a system with multiple NICs.
The interface entity attributes are as follows:

146https://linux.die.net/man/8/ip
147https://tldp.org/LDP/nag/node66.html

64

https://linux.die.net/man/8/ip
https://tldp.org/LDP/nag/node66.html

• id

Uniquely identify (PK) an interface record.
The attribute is of type UUID.

• node id

Node identifier.
Uniquely identify a node record (FK).
The attribute is of type UUID.
A node can have multiple network interfaces, but each network interface is associated with a
single and unique node. As a result, the relation is many (*) to one (1).

• name

Interface name.
The network interface name on the associated node. In GNU/Linux, common network interface
names for wired network interfaces are eth0, eth1, and so on, and for wireless network interfaces
are wlan0, wlan1, and so on. The network interface name, like block devices, can be changed
by the organization in control of the cluster from the one automatically assigned by the Kernel.
The latter procedure, while supported, is strongly discouraged to prevent potential confusion.
Furthermore, modifying it necessitates reconfiguring and restarting all applications/programs
that are configured to interact with the particular interface (i.e. SSH).
The interface name attribute is used in conjunction with the node id attribute to uniquely
identify (UNIQUE(node id,name)) an interface record and to avoid two interfaces with the same
name from being registered for the same node. Moreover, identifying a NIC by its name for a
related node is also helpful to users and administrators.

• address

Interface MAC address.
The MAC address assigned to the NIC and used for Internal Network communication (see sec-
tion 2.2.2). There must be no interfaces in the Internal Network with the same MAC address.
The latter is reflected in the database schema, which states that the attribute value must be
UNIQUE, implying that no two interfaces can have the same MAC address. This attribute can
be used to uniquely identify an interface record as a result of the latter, and it is known to be
particularly helpful when dealing with networking problems in understanding from which node
certain packets are sent/lost in the cluster.
Each database implementation, like the address attribute in the node entity, has its own speci-
fic/custom datatype for encoding a MAC address, therefore the attribute type is defined as plain
text.
Each database implementation, like the address attribute in the node entity, has its own speci-
fic/custom datatype for encoding a MAC address, therefore the attribute type is defined to plain
text.
It should be noted that the NIC’s MAC address is assigned by the corresponding manufacturer.
Nonetheless, there are software tools, such as macchanger148, that enable the MAC address to
be arbitrarily modified with any (valid) value.

• speed

Interface speed in bit-per-second (b/s).
The NIC’s speed/performance in bit-per-second. The value is read with the ethtool (see section
3.1.1) program by specifying the network interface name and is thus used in conjunction with the
ip program output. Because the obtained value/unit is not in b/s but in a base 10 multiple unit,
such as 100 Mb/s or 1 Gb/s (common speed values/units for consumer NICs), the installation
script converts to b/s using the numfmt149 application, which understands the unit and applies
the corresponding multiplication value.
Although some speed values of consumer NICs can fit in an integer type, this is not always the

148https://www.kali.org/tools/macchanger
149https://www.gnu.org/software/coreutils/manual/html_node/numfmt-invocation.html

65

https://www.kali.org/tools/macchanger
https://www.gnu.org/software/coreutils/manual/html_node/numfmt-invocation.html

case (for example, enterprise NICs, which can easily reach 10 Gb/s and beyond), therefore the
attribute’s type has been set to bigint.

• wol

Interface Wake-on-Lan (WoL) flags supported.
An interface can be triggered to bootstrap the node by multiple distinct WoL activities and this
attribute determines which WoL flags (each flag mapping to a particular trigger) are supported
by the interface.
The wol attribute is an array ([]) of wol flag enum because an interface can accept different
WoL triggers/flags. The array is empty if an interface does not support WoL. The latter is reflected
in the schema by the default value (DEFAULT([])) provided by the database to the attribute.
The wol attribute is intrinsically tied to the address attribute because both are used during
the Server’s (up)scaling procedure (see section 3.3.3). To begin, the wol attribute is used to
filter inactive nodes to obtain only a list of nodes that can be automatically bootstrapped using
WoL (search where wol is not an empty array). Then, for each node that needs to be boot-
strapped (select n nodes from the list), the associated MAC address of the interface is used as
the destination address of the WoL special message. It should be noted that the current imple-
mentation only allows basic WoL, even though some nodes in the cluster may support advanced
WoL configurations. Nevertheless, future implementations may support more sophisticated logic
and deterministically apply specific configurations based on the interface’s supported WoL flags.
The node wol flag enum has the following possible values/constants:

– a

Wake on ARP activity.

– b

Wake on Broadcast activity.

– g

Wake on MagicPacket activity.

– m

Wake on Multicast activity.

– p

Wake on PHY (Physical) activity.

– s

Enable SecureOn password for MagicPacket.

– u

Wake on Unicast activity.

It is worth noting that there is an additional possible value for the WoL flags, which is the value
d, which indicates that WoL is disabled on the interface. Because the installation script checks to
determine whether or not all WoL capable NICs have WoL enabled (if not, an error is generated),
the d value cannot be accepted by the GraphQL API and is thus omitted.
The g flag is the basic configuration for a WoL interface, allowing the node to be automati-
cally bootstrapped with WoL. As previously stated, the latter is the current (only) supported
configuration.

• created at

Date and time of creation.
The attribute indicates when the interface record was created.
The attribute is of type timestamptz.

• updated at

Date and time of the most recent update.
The attribute specifies the most recent timestamp the interface record was updated.
The attribute is of type timestamptz.

66

3.3.1.8 Status

status

id uuid PK | FK

status node_status

reason text NULLABLE

message text NULLABLE

last_heartbeat timestamptz NULLABLE

last_transition timestamptz

updated_at timestamptz

node_status

ACTIVE

ACTIVE_READY

ACTIVE_NOT_READY

ACTIVE_DELETING

BOOTING

INACTIVE

UNKNOWN

1

The status entity, as the name implies, represents the node’s current status, as updated with the
most recently available information.
The status entity’s information is critical for gaining a better understanding of the node, its condi-
tion, and if any potential problems, such as a crash or an anomaly/unprogrammed shutdown, arise.
Furthermore, it is widely used in autoscaling procedures (see section 3.3.3 and section 3.3.4). When
upscaling, the Server determines what are the list of nodes that are in an inactive status and, vice
versa, when downscaling, the Server determines what are the list of nodes that are in an active status.
It should be emphasized that the status entity is composed of multiple attributes, not just one, each
of which specifies a particular knowledge that can also be correlated to other attributes.
A node must have only one (unique) status record, and a status record must identify only one (unique)
node record. When a node successfully registers, the status record is automatically created, and it is
continuously updated while the node is operational. Because there are no status information updates
sent by the node when it is inactive, all of the attribute’s values reflect the most recent status infor-
mation before the node is shut down.
The status information is automatically updated by leveraging the Kubernetes API, which provides
access to the node’s status information, which is constantly updated by periodic Heartbeats sent by
the Kubernetes node to the API Server (Controllers). The information (attributes) of the status en-
tity is only a subset of the multitude made available by the Kubernetes API, as most of them are
unnecessary for low-level cluster operation and administration. Furthermore, some status updates are
performed without leveraging the Kubernetes API, either because the latter is unavailable or because
the node autonomously sends a request (i.e. after successfully bootstrapping and before starting all
cluster services) to specific protected GraphQL queries, generating intrinsic knowledge that the node
is somewhat active and performing a status update.
It should be noted that this entity lacks the created at attribute because it is created automatically
when the associated node is created, and thus the two timestamps will have the same value.
The status entity attributes are as follows:

• id

Uniquely identify (PK) a status record.
The attribute is of type UUID.
A node must have only one status, and a status must be assigned to only one/unique node. As
a result, the relation is one (1) to one (1).
The id attribute is also the Node identifier, which allows a node record to be uniquely identified
(FK). The id and node identifier (node id) attributes are separated in the previous entities to
represent the fact that the corresponding node can be associated with multiple records of the
entity. In the status entity, however, the id attribute serves as both the primary key (PK) and the
foreign key (FK) to a distinct node record. The latter ensures that a status record is unique, easy
to identify, and related to a single/unique node record automatically at the database schema level
(without the need for Server checks). When a status record is created (during the installation
process), its id is not derived from a default value (in fact, the DEFAULT(UUID) metadata is
missing), but it is the same as the associated node. The latter is also very useful for preventing

67

complex and expensive joins between the two entities because identifying a node’s status record
requires only its id because they are the same value.

• status

Node status.
Identify the node’s high-level status.
It is one of the most essential data that correlates to a node, and it is continuously updated
when the node is powered on. It can be used by users/administrators to gain a better under-
standing of the node’s current state, such as determining whether or not the node is properly
working/healthy. It is widely used in autoscaling procedures in conjunction with other attributes
to identify which nodes are inactive (upscaling) or active (downscaling).
The attribute is of type node status enum. Understanding each status is critical, and the
general perspective resembles a finite-state machine machine. Some statuses are only used to
transition from one to the next, whereas others designate a permanent status that varies only
in response to specific actions.
The node status enum has the following possible values/constants:

– ACTIVE

Node is active and healthy, with no Kubernetes orchestrator operating.
It is a transitory status that is assigned in one of the two situations listed below:

1. BOOTING ACTIVE ACTIVE NOT READY

The node has successfully booted (BOOTING) and has sent an update status request
to the Server’s protected GraphQL API (ACTIVE). After receiving a successful re-
sponse from the Server, the Node begins to initialize all necessary cluster services,
such as Node Exporter and K3s, by leveraging the corresponding installed Init System
(ACTIVE NOT READY).

2. ACTIVE DELETING ACTIVE INACTIVE

The node has been successfully removed (ACTIVE DELETING) from the Kubernetes clus-
ter (ACTIVE), and the Server begins the shutdown procedure (INACTIVE).

– ACTIVE READY

Node is active, healthy and the Kubernetes orchestrator is operating and accepting pods.
It is a permanent status that is constantly monitored by the Heartbeat system.
The status is assigned in the following situation:

1. ACTIVE NOT READY ACTIVE READY

The Kubernetes orchestrator on the node (ACTIVE NOT READY) has finished the ini-
tialization and is ready to accept workloads (ACTIVE READY).

The status is unassigned in the following situations:

1. ACTIVE READY ACTIVE DELETING

The node (ACTIVE READY) should be turned off (ACTIVE DELETING) because the Cluster
Autoscaler has monitored it and determined that its overall workload is less than the
predefined threshold, or because an administrator has sent a request to the GraphQL
API.

2. ACTIVE READY ACTIVE NOT READY

The node has not sent any Heartbeat messages for more than the predefined duration
threshold value. When the threshold time value is reached, the node status changes
from ACTIVE READY to ACTIVE NOT READY, and Kubernetes stops scheduling workloads
(pods) on the node.

– ACTIVE NOT READY

Node is active, healthy and the Kubernetes orchestrator is initializing (it cannot accept
pods).
It is a transitory status that is assigned in the following situations:

1. ACTIVE ACTIVE NOT READY ACTIVE READY

The node has received a successful response from the Server (ACTIVE) and is starting all

68

cluster-related services via the node’s corresponding Init System. When most services
start, they are still in a transitory phase known as initialization, in which they are
not immediately ready to accomplish their primary purposes (ACTIVE NOT READY).
After initialization, the services are available to be utilized and fulfill their purposes
(ACTIVE READY).
For example, the Kubernetes orchestrator takes nearly 15 to 30 seconds to initialize,
and during this time it is unable to receive any workload from the Controller nodes
because all of its components are also initializing.

2. ACTIVE READY ACTIVE NOT READY ACTIVE READY

Because the node has not sent any Heartbeat messages for more than the threshold time
value, its status is changed from ACTIVE READY, indicating that the node is working
and accepting pods, to ACTIVE NOT READY, indicating that the node is not working/un-
known, and Controller nodes cease scheduling pods to the node. If the node resumes
sending Heartbeat messages periodically, the status returns to ACTIVE READY. Other-
wise, if the node’s most recent Heartbeat message has been received for more than
a second (longer) threshold, the node status changes to UNKNOWN with the attributes
reason and message properly set, indicating that the node is unreachable and thus in
error.

– ACTIVE DELETING

Node is active and healthy and it is being removed from the Kubernetes cluster.
It is a transitory status that is assigned in the following situation:

1. ACTIVE READY ACTIVE DELETING ACTIVE

After receiving the request to power off the node, the Server instructs the Kubernetes
cluster to drain150 the node (safely remove/evict all pods from the node) so that it can
be successfully removed from the Kubernetes cluster (ACTIVE DELETING). After suc-
cessfully removing the node from the Kubernetes cluster, the associated Kubernetes
operator on the deleted node is terminated (ACTIVE).
Since this status is executed because the node needs to be turned off, the Server auto-
matically shuts down the node after the node status is changed to ACTIVE. The latter
is to indicate that if the ACTIVE status is assigned after this status, it will only be
effective for a very short time before the node becomes INACTIVE.

– BOOTING

Node is booting.
It is a transitory status that is assigned in the following situation:

1. INACTIVE BOOTING ACTIVE

The Server has received a GraphQL request from the Cluster Autoscaler or an ad-
ministrator to turn on a server in the cluster (INACTIVE). The Server then sends the
associated Wake-on-Lan magic message to the corresponding MAC address of the node’s
interface to automatically boot it up (BOOTING). After the booting period, which dif-
fers depending on the hardware of the node, the node sends the previously mentioned
update status message, which changes its status to ACTIVE.
It should be noted that if a node is powered on manually by a user or an administrator
using the power button, the BOOTING status is omitted in the transition because the
Server has no awareness of the action until the node sends the update status request
message transitioning from an INACTIVE to ACTIVE status.

– INACTIVE

Node is inactive (powered off).
It is a permanent status.
The status is assigned in the following situation:

1. ACTIVE INACTIVE

The node is in ACTIVE status, and the Server terminated it remotely via SSH (INACTIVE).

150https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node

69

https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node

It should be noted that the latter can also be executed manually by a user/administra-
tor using the power button, but the Server does not know anything about the current
status because there is no predefined transition between the various statuses, and thus,
after a period of time is set to an error status (UNKNOWN).

The status is unassigned in the following situation:

1. INACTIVE BOOTING

The node is in the INACTIVE status until the Server (via Wake-on-Lan) or a user/ad-
ministrator (via the power button) turns it on (BOOTING).
As previously stated, if the node is started using the power button, the status tran-
sitions directly from INACTIVE to ACTIVE, skipping the BOOTING status because the
Server does not know anything about the manual operation.

– UNKNOWN

Unknown/Error status.
This status is special in that it identifies a node that is in an error condition due to an issue
that must be resolved.
All statuses can transition to (error discovered) and from (error resolved) this status.
For example, when this status is set for a node, it means that the Kubernetes orchestrator
has crashed and no Heartbeats have been received by the Controllers for a specified amount
of time.

Figure 3.3.1.8 depicts all of the possible statuses and the transitions between them. Take note of
the manual transition from INACTIVE to ACTIVE, as well as the bidirectional transition between
ACTIVE NOT READY and ACTIVE READY.

ACTIVE

UNKNOWN

INACTIVE ACTIVE
READY

BOOTING

ACTIVE
NOT
READY

ACTIVE
DELETING

Figure 3.19: Statuses and their transitions

• reason

Status’ reason.
Determine briefly why the status attribute has the corresponding value. The reason attribute
value is typically one word or a sequence of very few words that briefly describe the cause for
the node’s status attribute value. In transitional statuses (i.e. no persistent) that transition
from one status to another, the value of this attribute can be assigned with various and distinct
values, defining the logical path to the final status. The latter is particularly obvious during
the Kubernetes initialization (from ACTIVE to ACTIVE READY), which continues to change the
attribute’s value to represent the fact that the various Kubernetes components are starting.
For example, if the node’s status value is ACTIVE READY and the Kubernetes process is running
smoothly, the value of this attribute is set to KubeletReady, indicating that the Kubernetes

70

kubelet151 component is functioning properly.
Because the reason why the status has the corresponding value is not always known, this attribute
can take a NULL value (NULLABLE), indicating that the reason is undetermined. This is prevalent
if the status value is UNKNOWN and the cause of what happened is obscure.

• message

Status’ message.
Describes why the status/reason attributes have the corresponding value using a longer string.
This attribute is intrinsically tied to the other two attributes; if the value of one of them changes,
this attribute will probably be updated as well. It can be considered an extended description
message for the reason value, and it is particularly useful for users and administrators who want
to understand the current node’s status. If the node status is set to UNKNOWN and the cause is
known, the latter can be extremely beneficial: the reason attribute describes the issue in brief
with a high-level perspective, whereas the message attribute is more detailed in explaining the
cause of the problem with a low-level perspective. As for the reason attribute, the value of
the message attribute during transitional statuses can vary arbitrarily depending on the logical
path between the two statuses, whereas it remains nearly constant during persistent statuses.
For example, if the node’s status is ACTIVE READY and the Kubernetes process is functioning
properly, this attribute’s value is set to kubelet is posting ready status, indicating that
the Kubernetes kubelet is accepting pods (working) and sending periodic Heartbeat messages
to the corresponding Controller node. The combination of the reason and message attributes
indicate that the Kubernetes node is operating properly and why.
Because the content of the message attribute is not always known, it can accept NULL values
(NULLABLE). If the value of the reason attribute is NULL, it is almost certain that the value of
the message attribute is also NULL.

• last heartbeat

Date and time of the most recent Heartbeat message152.
The attribute indicates the most recent timestamp at which a Controller node received a Heart-
Beat message sent by the associated node (Kubernetes kubelet). The attribute is of type
timestamptz.
A HeartBeat message is sent whenever the node’s Kubernetes status changes or there is no
update in the defined HeartBeat interval. During the initialization phase, Kubernetes boot-
straps numerous components, and the reason and message attributes are constantly changed,
resulting in frequent updates to the last heartbeat attribute. Far from it, when the node
is finally ready/working and accepting pods (ACTIVE READY status), the frequency of Heart-
beat messages is much slower, but constant, and follows the specified interval, defined as
node-status-update-frequency. If the node’s Heartbeat messages are not received after a
second time threshold, defined as node-monitor-grace-period and higher than the
node-status-update-frequency, the node status is changed from ACTIVE READY to
ACTIVE NOT READY, and the Controller cease assigning workload (pods) to the node. If the node
becomes reachable again and resumes transmitting periodic Heartbeat messages, the node sta-
tus is immediately revert to ACTIVE READY, and the Controller node resume scheduling pods
to the node. If no Heartbeat messages are received after a third time threshold, defined as
pod-eviction-timeout and higher than node-monitor-grace-period, the Controller begins
evicting154 all deployments (pods) that are scheduled on the node and the node’s status is
changed to UNKNOWN. Note that the pods scheduled on the node may still operate, and because
the Controller is unable to communicate with the disconnected node, the pods status is also set
to Terminating or Unknown.
To summarize, the previously mentioned threshold time values are outlined below (along with
their respective default value):

151https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet
152153

154https://kubernetes.io/docs/concepts/scheduling-eviction/api-eviction

71

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet
https://kubernetes.io/docs/concepts/scheduling-eviction/api-eviction

1. node-status-update-frequency155

The frequency at which the kubelet sends node status (heartbeat message) to the Con-
troller.
The default value is 10 seconds (10s).

2. node-monitor-grace-period156

Amount of time after which an operating node is set to be unresponsive, indicating that
it is unhealthy. Must be N times greater than the node-status-update-frequency of the
node’s kubelet, where N is the number of retries.
The default value is 40 seconds (40s).

3. pod-eviction-timeout157

The duration after which the pods scheduled on the unresponsive node begin to be removed.
The default value is 300 seconds (5m).

It should be noted that the latter threshold values can be tailored to cluster-specific use-case sce-
narios, yielding approximately three configurations158: Fast Update/Fast Reaction, Medium
Update/Average Reaction and Low Update/Slow reaction.
Because the reception of the most recent Heartbeat message is not always known, this attribute
can be NULL (NULLABLE). Furthermore, the value is NULL when the status is INACTIVE.

• last transition

Date and time of the most recent status transition.
This attribute indicates the last time the status attribute has been changed. It is very helpful
for users and administrators to understand how long the node has been in the current status.
The attribute is of type timestamptz.
The value cannot be NULL because the status attribute cannot be NULL (and thus it is known
when the most recent transition occurs) and also because the Server is in charge of updating this
attribute. Therefore, the Server is the only component with both low-level knowledge (GraphQL
API requests sent by the node itself) and high-level knowledge (Kubernetes Heartbeats).
For example, if the node’s status attribute is set to ACTIVE READY and the difference between
the current timestamp and the value of the last transition attribute is 48 hours, which implies
that the node has been participating in cluster operations for two consecutive days. The same
logic can be applied to determine how long the node is powered off (INACTIVE status) and thus
unused.

• updated at

Date and time of the most recent update.
The attribute specifies the most recent timestamp the status record was updated.
The attribute is of type timestamptz.

155https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#node-status-update-fre

quency
156https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#node-m

onitor-grace-period
157https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#pod-evi

ction-timeout
158https://github.com/kubernetes-sigs/kubespray/blob/master/docs/kubernetes-reliability.md

72

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#node-status-update-frequency
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/#node-status-update-frequency
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#node-monitor-grace-period
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#node-monitor-grace-period
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#pod-eviction-timeout
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#pod-eviction-timeout
https://github.com/kubernetes-sigs/kubespray/blob/master/docs/kubernetes-reliability.md

3.3.1.9 Node Pool

node_pool

id uuid PK | DEFAULT(UUID())

name text UNIQUE

min_nodes integer

auto_scale boolean DEFAULT(true)

created_at timestamptz DEFAULT(NOW())

updated_at timestamptz

1

The node pool entity represents a collection of nodes with similar hardware characteristics.
This entity is critical for autoscaling, and the Cluster Autoscaler component makes extensive use
of the available registered node groups, their respective information, and the corresponding nodes.
Indeed, the Cluster Autoscaler relies on both high-level knowledge obtained from the Kubernetes
API to continuously monitor the nodes and all scheduled workloads across the cluster, and low-level
knowledge obtained from this entity (via the GraphQL API) to determine whether there are node pools
with inactive nodes that can be booted up (upscaling) or nodes that can be turned off (downscaling)
if some nodes are underutilized.
The current implementation combines nodes based on their respective number of CPU cores and
memory (RAM) amount, which is also reflected in the name attribute. It should be noted that in
future implementations, the GPU model may also be used. Because the number of CPU cores is
relatively small, dealing with comparisons is relatively simple. However, for two primary causes, the
latter is far from true for memory quantity. Firstly, the memory quantity unit is in byte (B), the data
type is bigint, and therefore comparisons are performed on extremely large integers. Secondly, even if
two nodes are from the same manufacturer and have the same hardware components, it is not always
guaranteed that the memory quantity in bytes is identical. The latter has happened in reCluster,
where the four Worker nodes are the same model from the same manufacturer and equipped with the
same hardware, but their memory quantities in bytes vary slightly. One potential explanation is that
some memory cells are faulty (this is more likely with older hardware, on which reCluster is designed),
and the memory controller hides them from the Operating System, causing the total to be slightly
different. To address the latter issues, the memory amount is first converted to GigaBytes (GiB) and
then rounded to the closest half, yielding 0.5 or a multiple of it. It is now simple to organize the nodes
in groups. It should be noted that the 512 MiB (0.5 GiB) value is not random, but rather reflects
the minimal hardware requirements of the Kubernetes Orchestrator (K3s). As an example, consider
the following four nodes: the first has a 4 core CPU and 4 GiB of memory, the second has an 8 core
CPU and 7.5 GiB of memory, the third has a 4 core CPU and 4 GiB of memory, and the fourth has
an 8 core CPU and 8 GiB of memory. The first and third nodes are assigned to the same node pool,
whereas the second and fourth nodes are assigned to separate node pools.
The System has two logical node pools: one for Controller nodes and one for Worker nodes. Worker
node pools function as previously explained, and they’re employed for autoscaling by default. While
all Controller nodes are merged into a single node pool called controllers, no hardware components
are examined, and auto-scaling is disabled. The latter is done because, by design, the cluster cannot
auto-scale Controller nodes, leaving hardware comparisons meaningless. If a controller node needs to
be converted to a Worker node, it must first be deleted by the Kubernetes cluster, then removed by the
Server/Database (via a single GraphQL API call made by an administrator), and finally re-registered
in the cluster as a Worker node.
The node must be assigned to a node pool during the registration process. If the node pool does not

73

exist, it is created automatically; otherwise, the node is assigned to the appropriate node pool with
the same amount of CPU cores and transformed memory quantity.
The node pool entity has the attributes min nodes and auto scale, which can be modified by an
administrator via a GraphQL API node pool update request to change the associated node pool’s
autoscaling behavior.
As previously stated, a node is assigned to a single and unique node pool, but a node pool can be
assigned to zero or multiple nodes.
The node pool entity attributes are as follows:

• id

Uniquely identify (PK) a node pool record.
The attribute is of type UUID.
A node must be assigned to a single and unique node pool, and a node pool can have zero or
more nodes assigned to it. As a result, the relation is one(1) to many(*).

• name

Node pool’s name.
A string of characters that uniquely (UNIQUE) identifies a node pool record.
The name and id attributes are conceptually interchangeable because they both uniquely identify
the same node pool record. Furthermore, identical to the user entity’s username attribute, the
name attribute is mostly used for users and administrators to easily and quickly identify a node
pool record without having to remember a 128-bit alphanumerical string (UUID).
When the Server needs to create an additional node pool, it automatically assigns a value to the
name attribute based on the node type, the number of CPU cores, and the transformed memory
quantity value. If the node pool is dedicated only to Controller nodes, the name is set to
controllers without any further information (this can be changed in the Server configuration).
However, the name of a node pool dedicated to Worker node(s) is a combination of the two
hardware values separated by a dot (.). It should be noted that the latter can be easily modified
in the Server implementation with different values/logic.
For example, cpu8.memory7.5 is the name of a Worker nodes pool that combines nodes with 8

CPU cores and 7.5 GiB of memory.

• min nodes

Minimum number of active (ACTIVE READY status) nodes in the node pool.
The attribute specifies a minimal number (inclusive) of active nodes with the ACTIVE READY

status in the node pool.
The Cluster Autoscaler uses this information to determine the minimal number of nodes in the
node pool that must always be available in the Kubernetes cluster. Until the number of active
nodes in the node pool equals the value of the min nodes attribute, the Cluster Autoscaler is
allowed to downscale the nodes in the node pool.
The architecture is particularly focused on minimizing resource loss and energy usage. There-
fore, to enable the Cluster Autoscaler to completely downscale all Worker nodes (or particular
node pools), all node pools that are dedicated to Worker nodes by default have the value of
this attribute set to 0. Contrarily, the Cluster Autoscaler automatically disables autoscaling
procedures in the node pool reserved for controller nodes (controllers), where the number of
the min nodes attribute is set to the total number of nodes assigned to the node pool. Since
there are no active Worker nodes when the cluster’s overall workload is extremely low or nonex-
istent, with just one or a very small number of Controller Nodes requiring minimal resources,
this enables the least amount of power consumption and resource loss.
Administrators can modify this attribute based on the cluster’s requirements and/or increase
the cluster’s minimal capacity in preparation for a high volume of requests. However, whenever
the attribute is changed, it is verified that the new value is not less than 0 or greater than the
total number of nodes assigned to the node pool. The two latter checks prevent a node pool
from having the minimum number of nodes below 0 (impossible) and also ensure that it does not
exceed the node pool’s maximum allowed capacity, as any autoscaling capabilities or procedures

74

are automatically disabled when a value is greater than the number of nodes assigned to the
node pool.
It should be noted that the additional knowledge of the number of active nodes (count) and
the maximum number of nodes (max nodes) available in the node pool are calculable values
that reflect a higher degree of knowledge concerning the Database schema and are, as a result,
calculated by the Server and made available via internal services and the GraphQL API. The
two values are also used by the Cluster Autoscaler to determine the number of active nodes
currently present in the node pool as well as the highest number of nodes that can be provided
for upscaling.

• auto scale

A Boolean flag that indicates whether or not the node pool can be employed for autoscaling.
The attribute is of type boolean, where true indicates that the node pool can be used for
autoscaling and false indicates that it cannot be handled for autoscaling and all nodes assigned
to the node pool must be ignored.
For all node pools that identify Worker nodes, the default value (DEFAULT) is true, so the Server
omits the attribute whenever it needs to create a new node pool for Worker nodes. The flag is
set to false by the Server during the initial creation of the node pool designated to Controller
nodes since any autoscaling procedures must ignore it.
When combined with the min nodes attribute, this attribute prevents the node pool designated
for Controller nodes from autoscaling. Additionally, administrators have the same flexibility in
changing the flag temporarily as with the prior attribute to meet specific cluster requirements.

• created at

Date and time of creation.
The attribute indicates when the node pool record was created.
The attribute is of type timestamptz.

• updated at

Date and time of the most recent update.
The attribute specifies the most recent timestamp the node pool record was updated.
The attribute is of type timestamptz.

3.3.2 GraphQL API

This description shows the GraphQL API made available by the Server, which enables users and nodes
to interact with both the high-level cluster, which represents the Kubernetes cluster and its overall
workload, and the low-level cluster, which represents the bare-metal knowledge stored inside the
Database. As previously mentioned, the API can provide more advanced capabilities and calculated
data/attributes that are not present in the pure Database schema, such as the count and max nodes

attributes of the Node Pool entity.

Source: https://graphql.org/

brand

Figure 3.20: GraphQL
logo

GraphQL159 is a query language and server-side runtime for running
queries using a type system specified in a schema. A GraphQL service is
built by specifying types and fields on those types, then providing methods
(resolvers) for each field on each type. Before any operation is made, it is
first verified that it only pertains to the types and variables specified in the
schema. Declarative data fetching with GraphQL allows clients to define
precisely which data are needed, eliminating over- and under-fetching. Ad-
ditionally, a GraphQL server only provides a single API endpoint rather than multiple endpoints that
yield fixed data structures, as is the case with REST (REpresentational State Transfer). The GraphQL
endpoint in the Server implementation is accessible at /graphql, but it can be modified to better suit
the requirements of the cluster’s organization. It requires considerable effort/time to understand how
GraphQL operates and how its overall structure/architecture is composed of all the various types,
fields, queries, mutations, etc. The latter, however, is outside the scope of this document, so it is

159https://graphql.org

75

https://graphql.org/brand
https://graphql.org/brand
https://graphql.org

strongly advised to visit the official website at https://graphql.org for a better comprehension of
how GraphQL works.
It is nearly unfeasible to provide a detailed explanation of the generated GraphQL schema for the
Server implementation because it consists of almost 2000 lines of code. Therefore, the explanations
in this section (hence the titles of the two subsections) are limited to the queries and mutations that
are exposed by the GraphQL API and the majority of them can be considered as an extension of the
knowledge that is contained in the database schema that was previously discussed. Additionally, the
word generated at the beginning of this paragraph was not written at random but rather to highlight
the fact that the GraphQL API is implemented using a code-first approach rather than a schema-first
approach, establishing a single source of truth by defining the schema using classes and decorators.
The majority of GraphQL queries and mutations provided by the Server implementation do not re-
quire any authentication or authorization, allowing anyone to utilize them. Far from it; the remaining
queries and mutations are protected by a customized GraphQL Auth Directive (@auth) that prevents
unauthenticated and/or unauthorized accesses. Since the GraphQL Auth Directive is a standard fea-
ture that can be used and shared by other GraphQL APIs and projects, it is not restricted to cluster
implementation and enables protection for all possible GraphQL APIs. To make the GraphQL Auth
Directive accessible to the public as a library that can be easily integrated with other projects, it was
developed as a side project alongside the cluster implementation. Attachment A.3 includes an in-depth
overview correlated with examples of the GraphQL Auth Directive. Compared to the implementation
of the latter directive, the directive used in the cluster implementation only differs by one small detail:
type, an extra argument used to identify the type of the entity making the request (USER or NODE).
Requests are rejected if the entity sending them does not match the one listed in the directive. The
value USER is assigned by default if the type parameter is missing.
A personal security token that is generated and provided by the Server for either a Node or a User
is required from the entity performing the request to access a protected GraphQL query or mutation.
When a Node registers to the cluster for the first time, it automatically obtains the token and is
unable to obtain a new one ever again. A User is more flexible and can obtain a new token when-
ever it is successfully authenticated using the appropriate GraphQL mutation (signIn). The token
implementation and management rely entirely on JSON Web Tokens160 (JWT). JWT is an open stan-
dard, which specifies a compact and self-contained method for safely transferring data between parties
as a JSON (JavaScript Object Notation) object. Because it is digitally signed with a secret (using
the HMAC algorithm) or a public/private key pair (using RSA or ECDSA), this information can be
verified and trusted[6]. The JWT token is digitally signed by RS256 in the Server implementation,
but this can be easily modified in the configuration settings with the appropriate public/private key
pair files and corresponding encryption algorithm. The content of the token comprises 4 pieces of
encoded information in addition to the JWT’s data. The first of these is the type, which specifies the
type of the entity (USER or NODE), the second is the id, which is used to uniquely identify the entity
in queries and mutations implementation, and the final two are the roles and permissions of the
entity, which are used in combination with the type to ensure protection. The token must be provided
in the request’s Authorization header using the Bearer authentication scheme161: Authorization:
Bearer <TOKEN>. An error response is generated if the entity attempts to access a protected API but
the token is either absent, in an invalid format, or the verification procedure fails.
It should be noted that in the implementation, all GraphQL queries/mutations that return a list ([])
support pagination, which includes both offset pagination and cursor-based pagination, via the argu-
ments cursor, skip (default value set to 0), and take (default value set to 8). This allows the entities
to divide the returned resources into manageable chunks improving the overall search experience and
the overall Server performance. Additionally, the latter queries/mutations support advanced sorting,
via the orderBy argument, and filtering, via the where argument. As previously stated, the GraphQL
API is built on top of the database and its schema, so the API can be considered an extension of
the database in terms of both the parameters that are accepted and the resources/objects that are
returned.

160https://jwt.io
161https://www.rfc-editor.org/rfc/rfc6750

76

https://jwt.io
https://www.rfc-editor.org/rfc/rfc6750

3.3.2.1 Queries

GraphQL queries (Query162) are used to query/fetch data without any server-side modification. Query
fields can be executed in parallel by the GraphQL engine.
A GraphQL Query is the logical equivalent of a GET request in REST.
All GraphQL Query(s) supported by the Server implementation are listed below:

• cpu(id: ID!): Cpu

cpu query returns the Cpu163 object that matches the specified identifier (id argument).
Because of the ! symbol, the id argument cannot be null and is thus required. Whereas the
returned Cpu object is nullable (there is no ! symbol) implying that the query returns null if
no CPU matches the provided identifier.

• cpus(cursor: ID, orderBy: OrderByCpuInput, skip: NonNegativeInt! = 0, take: Int! = 8,

where: WhereCpuInput): [Cpu!]!

cpus query returns a non-nullable list ([]!) of non-nullable Cpu objects.
The query allows for pagination (cursor, skip, and take arguments), filtering (where argument
of type WhereCpuInput164), and sorting (orderBy argument of type OrderByCpuInput165). It
is worth noting that the argument skip is of the type NonNegativeInt, indicating that it can
accept values of 0 (inclusive) or greater and that it is required (! symbol), but because it has a
default value of 0, it can be omitted in the request. The take argument is similar, but it can
accept values less than, equal to, or greater than 0 and has a default value of 8. The latter
arguments and requirements are present in all queries that return a list, with the only variation
being the type of the associated where and orderBy arguments.

• interface(address: MAC, id: ID): Interface

interface query returns the Interface166 object that matches the specified identifier (id ar-
gument) or MAC address (mac argument).
Because they both uniquely designate an Interface object, both arguments are nullable. If the
query is executed with both arguments set to null, an error is returned because the correspond-
ing resolver function is unable to uniquely identify the record.

• interfaces(cursor: ID, orderBy: OrderByInterfaceInput, skip: NonNegativeInt! = 0, take: Int! = 8,

where: WhereInterfaceInput): [Interface!]!

interfaces query returns a non-nullable list of non-nullable Interface objects.
The where argument is of type WhereInterfaceInput167, and the orderBy argument is of type
OrderByInterfaceInput168.

• node(id: ID, address: IP, name: String): Node

node query returns the Node169 object that matches the specified identifier (id argument), IP
address (ip argument) or name (name argument).

• nodes(cursor: ID, orderBy: OrderByNodeInput, skip: NonNegativeInt! = 0, take: Int! = 8,

where: WhereNodeInput): [Node!]!

nodes query returns a non-nullable list of non-nullable Node objects.

162http://spec.graphql.org/draft/#sec-Query
163https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Cpu.ts
164https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereCpuInpu

t.ts
165https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByCpu

Input.ts
166https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Interface.ts
167https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereInterfa

ceInput.ts
168https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByInt

erfaceInput.ts
169https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Node.ts

77

http://spec.graphql.org/draft/#sec-Query
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Cpu.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereCpuInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereCpuInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByCpuInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByCpuInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Interface.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereInterfaceInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereInterfaceInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByInterfaceInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByInterfaceInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Node.ts

The where argument is of type WhereNodeInput170, and the orderBy argument is of type
OrderByNodeInput171.

• nodePool(id: ID, name: String): NodePool

nodePool query returns the NodePool172 object that matches the specified identifier (id argu-
ment) or name (name argument).
As mentioned in section 3.3.1.9, the Node Pool object in the GraphQL API adds two addi-
tional attributes/fields to the basic knowledge provided by the Database schema. The first field,
max nodes, defines the total number of nodes that the node pool can handle. The field has the
same value as the number of nodes that are associated with the corresponding node group. The
second field, count, defines the amount of nodes that are associated with the respective node
pool, have the node pool assigned attribute set to true, and are operational (active status).
The latter field is used to determine the amount of Kubernetes nodes of the corresponding node
pool that are operational and actively participating in the cluster. Both of these attributes are
critical for autoscaling purposes and are extensively used by the Cluster Autoscaler component.

• nodePools(cursor: ID, orderBy: OrderByNodePoolInput, skip: NonNegativeInt! = 0, take: Int! = 8,

where: WhereNodePoolInput)): [NodePool!]!

nodePools query returns a non-nullable list of non-nullable NodePool objects.
The where argument is of type WhereNodePoolInput173, and the orderBy argument is of type
OrderByNodePoolInput174.

• status(id: ID!): Status

status query returns the Status175 object that matches the specified identifier (id argument).

• statuses(cursor: ID, orderBy: OrderByStatusInput, skip: NonNegativeInt! = 0, take: Int! = 8,

where: WhereStatusInput): [Status!]!

statuses query returns a non-nullable list of non-nullable Status objects.
The where argument is of type WhereStatusInput176, and the orderBy argument is of type
OrderByStatusInput177.

• storage(id: ID!): Storage

storage query returns the Storage178 object that matches the specified identifier (id argument).

• storages(cursor: ID, orderBy: OrderByStorageInput, skip: NonNegativeInt! = 0, take: Int! = 8,

where: WhereStorageInput): [Storage!]!

storages query returns a non-nullable list of non-nullable Storage objects.
The where argument is of type WhereStorageInput179, and the orderBy argument is of type
OrderByStorageInput180.

170https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereNodeInp

ut.ts
171https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByNod

eInput.ts
172https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/NodePool.ts
173https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereNodePoo

lInput.ts
174https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByNod

ePoolInput.ts
175https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Status.ts
176https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereStatusI

nput.ts
177https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderBySta

tusInput.ts
178https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Storage.ts
179https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereStorage

Input.ts
180https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderBySto

rageInput.ts

78

https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereNodeInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereNodeInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByNodeInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByNodeInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/NodePool.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereNodePoolInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereNodePoolInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByNodePoolInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByNodePoolInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Status.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereStatusInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereStatusInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByStatusInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByStatusInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/Storage.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereStorageInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereStorageInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByStorageInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByStorageInput.ts

• user(id: ID, username: NonEmptyString): User

user query returns the User181 object that matches the specified identifier (id argument) or
username (username argument).

• users(cursor: ID, orderBy: OrderByUserInput, skip: NonNegativeInt! = 0, take: Int! = 8,

where: WhereUserInput): [User!]!

users query returns a non-nullable list of non-nullable User objects.
The where argument is of type WhereUserInput182, and the orderBy argument is of type
OrderByUserInput183.

3.3.2.2 Mutations

GraphQL mutations (Mutation184) are used for operations that modify any server-side data. Mutation
top-level fields are executed in serial by the GraphQL engine.
A GraphQL Mutation is the logical equivalent of a POST, PUT, PATCH, or DELETE request in REST.
All GraphQL Mutation(s) supported by the Server implementation are listed below:

• createNode(data: CreateNodeInput!): JWT!

createNode resolver registers a new Node object in the Database using the data provided in
the data input argument (of type CreateNodeInput185) and returns a JWT security token if
successful.
The associated Node will use the returned JWT token for any future operations involving any of
the protected GraphQL APIs.
It should be noted that if the registration fails for any reason, no JWT token is returned and an
error is generated.
Because neither the data argument nor the returned JWT token can be null, a value must/is
always supplied.

• createUser(data: CreateUserInput!): User!

createUser resolver registers a new User object in the Database using the data provided in
the data input argument (of type CreateUserInput186) and returns the created User object if
successful.
The returned User object includes extra fields related to the given data, such as the generated
id and designated roles/permissions fields.
The plain text password is hashed using the bcrypt password-hashing function before being
saved in the Database. Furthermore, there is no password field mapped in the GraphQL schema
that is assigned to the User object, so it cannot be retrieved via any GraphQL queries or
mutations. The latter is done as a security precaution to prevent sensitive information from
leaking outside of the Server.
The difference between this mutation and the previous one is that no JWT security token is
returned because the user must use the specific mutation signIn to successfully authenticate
and acquire the JWT security token.
Because neither the data argument nor the returned User object can be null, a value must/is
always supplied.

• signIn(username: NonEmptyString!, password: NonEmptyString!): JWT!

signIn resolver requires a user’s username and password to authenticate it. A JWT security

181https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/User.ts
182https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereUserInp

ut.ts
183https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByUse

rInput.ts
184http://spec.graphql.org/draft/#sec-Mutation
185https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/create/CreateNodeI

nput.ts
186https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/create/CreateUserI

nput.ts

79

https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/entities/User.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereUserInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/where/WhereUserInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByUserInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/orderby/OrderByUserInput.ts
http://spec.graphql.org/draft/#sec-Mutation
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/create/CreateNodeInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/create/CreateNodeInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/create/CreateUserInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/create/CreateUserInput.ts

token identifying the user entity is returned if the authentication procedure succeeded.
The username argument is used to uniquely identify a User record to acquire the associated
password hashed using the bcrypt password-hashing algorithm during the registration proce-
dure. A bcrypt function compares the provided plain text password argument with the saved
hashed password and returns true if the password matches and false otherwise.
If the authenticated procedure fails due to an invalid username and/or password, the mutation’s
error provides the generic message "Username or password is incorrect" to prevent possible
information leakage that an attacker could leverage.
It should be noted that the current implementation lacks an advanced token system for with-
drawing tokens or verifying the current available active sessions. The latter may be employed in
future implementations that depend on a more advanced architecture.

• unassignNode(id: ID!): Node! @auth(type: USER, roles: [ADMIN])

unassignNode mutation unassign and deactivate the node identified by the id attribute.
The mutation is widely used in downscaling procedures to downscale the cluster’s specific node,
which is identified by the id argument. The procedure drains the Kubernetes node first, then
deletes it from Kubernetes, and when the Server monitoring receives confirmation of the dele-
tion, it remotely turns off the node via SSH. Section 3.3.4 explains the latter procedure in better
detail.
An equivalent mutation for upscaling procedures does not exist because the Cluster Autoscaler
only has high-level knowledge of the cluster and thus only knows about the current Kubernetes
cluster and its corresponding active nodes, rather than all available nodes and their respective
low-level information (i.e. identifiers, statuses and more).
The Auth directive (@auth) is used to protect the mutation from unauthenticated and unautho-
rized access. It specifies that only an entity of type USER with the ADMIN role is authorized to
unassign and turn off a node (as indicated by the directive arguments).

• updateNodePool(id: ID!, data: UpdateNodePoolInput!): NodePool! @auth(type: USER, roles: [ADMIN])

updateNodePool mutation is used to update the node pool with the data argument (of type
UpdateNodePoolInput187) identified by the id argument.
It should be noted that the data argument contains the count field that is not available in the
Database and is thus considered marker information. The cluster is autoscaled whenever the
count field is not null and the difference between it and the current count is not zero. If the
specified count is less than the current count, the cluster must be downscaled, and the difference
indicates how many nodes in the corresponding node pool must be downscaled (deleted from
Kubernetes and powered off remotely). The downscale procedure is the same as the one outlined
in the previous mutation, but the nodes that must be downscaled are selected with the strict
policy of minimizing total cluster power consumption. As a result, the selected nodes are those
that consume more energy than the others that are currently operational in the Kubernetes
cluster. If the specified count is greater than the current count, the cluster must be upscaled,
and the difference indicates how many nodes in the corresponding node pool must be upscaled
(remotely powered on). The list of nodes that need to be upscaled is generated by searching
for nodes that are currently in the INACTIVE status and have the appropriate interface with
Wake-on-Lan support (wol attribute array non-empty) to allow remote bootstrapping. Then,
the energy-saving policy is applied again, and the list is sorted in ascending order of power
consumption: nodes at the beginning of the list are more power-efficient, while nodes at the
end are less power-efficient. Starting from the beginning of the list, the Server selects the same
number of nodes as the difference between the two count values (is always positive since it
is an upscale procedure), and for each node, the Server sends a Wake-on-Lan message on the
associated interfaces’ MAC address, remotely bootstrapping it. Section 3.3.3 explains the latter
procedure in better detail.
If the specified count field is less than zero or higher than the total number of nodes associated

187https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/update/UpdateNodeP

oolInput.ts

80

https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/update/UpdateNodePoolInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/update/UpdateNodePoolInput.ts

with the corresponding node pool (max nodes), an error is returned because the value provided is
incorrect. Furthermore, if the identified node pool has disabled the autoscaling feature by having
the auto scale flag attribute set to false, an error is returned indicating that the operation is
not allowed for the given node pool.
Identical to the previous one, this mutation is protected by the Auth directive (@auth), which
allows only a USER entity with the ADMIN role to perform the action.

• updateStatus(data: UpdateStatusInput!): Status! @auth(type: NODE)

updateStatusmutation updates the Status with the data argument (of type UpdateStatusInput188)
of the corresponding Node identified in the JWT security token provided. If the update procedure
is successful, the updated Node object is returned.
Because the mutation is protected by the Auth directive (@auth), and a JWT token (of a NODE

entity type) must always be provided to perform the mutation, there is intrinsic knowledge of
who is requesting the update. The JWT token encodes the Node identifier (id field), which is
used to uniquely identify the status record that necessitates the update with the provided data

argument. As stated in section 3.3.1.8, the Status record identifier and the Node identifier are
the same value because the Status entity’s id attribute is both a Primary Key (PK) and a For-
eign Key (PK) that is uniquely related to the corresponding Node identifier (id field). If the two
IDs are different, a join operation between the Node entity and the Status entity is required,
necessitating of more resources and increasing the total execution time of the mutation.

• updateUser(data: UpdateUserInput!): User! @auth(type: USER)

updateUser mutation updates the User with the data argument (of type UpdateUserInput189)
of the corresponding User identified in the JWT security token provided. If the update procedure
is successful, the updated User object is returned.
This mutation, like the previous one, relies on the identifier encoded in the provided JWT token
(of a USER entity type) to uniquely identify the User record and update it with the data argument
provided.
It should be noted that if the password field in the data argument is not null, it must be verified
that it matches the minimal password criteria outlined in the section 3.3.1.3. If the password

meets the minimal criteria, it is hashed using the bcrypt password-hashing function and then
saved in the Database.

3.3.3 Upscaling

NODE 0

ACTIVE_READY

NODE 1

INACTIVE

UPSCALING

NODE 0

ACTIVE_WORKING

NODE 1

ACTIVE_WORKING

NODE 0

ACTIVE_READY

NODE 1

ACTIVE_READY

This section illustrates how the Server implementation performs
the Upscaling procedure to enable INACTIVE nodes to be re-
motely bootstrapped employing Wake-on-Lan.
Wake-on-Lan (WoL) is an Ethernet standard protocol used to
power on a machine using a specifically crafted network mes-
sage known as a Magic Packet[1]. It should be noted that to be
awakened, the system’s NIC must support and enable WoL. The
Magic Packet is a frame sent in broadcast (destination MAC ad-
dress FF:FF:FF:FF:FF:FF) containing the NIC’s MAC address of
the target machine that needs to be awakened. When the Magic

Packet is received by the corresponding NIC and WoL is supported and enabled, the system bootstraps
as if it were turned on via the power button. Because the Magic Packet is broadcasted, every NIC in
the cluster receives it, but it is simply ignored because the target MAC address does not match. WoL

configuration and flags have already been thoroughly discussed in section 3.3.1.7.
When the data argument of the updateNodePool GraphQL mutation has the count field set to a value
larger than the current one, the Upscaling process is executed. It should be noted that if the count’s
value is less than the current count, the process is reversed and a Downscale procedure is performed.

188https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/update/UpdateStatu

sInput.ts
189https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/update/UpdateUserI

nput.ts

81

https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/update/UpdateStatusInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/update/UpdateStatusInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/update/UpdateUserInput.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/graphql/inputs/update/UpdateUserInput.ts

The difference between the count argument and the current count is the number of INACTIVE nodes
in the associated node pool that must be bootstrapped. The Server implementation examines invalid
or unfeasible values (i.e. the count is higher than the total number of nodes assigned to the associated
node pool) and potential errors during the overall procedure.
Because the Server only has a low-level knowledge of the cluster and does not continuously monitor
the entire Kubernetes cluster, its overall workload, and resource consumption, it must be instructed to
execute the action by another entity. The entity that initiates the Upscaling procedure is typically the
Cluster Autoscaler, which, unlike the Server, has a high-level knowledge of the cluster and can thus
use the previously missing information to determine when and for how many nodes to perform the
Upscaling procedure. A human Administrator is the second entity that physically forces the cluster
to be Upscaled. The latter is less common, but it can be the consequence of different motivations and
or requirements, such as preparing the cluster for an upcoming high volume of traffic that cannot be
sustained with the previous number of active nodes.
The decision about which INACTIVE nodes should be bootstrapped adheres to the strict policy of power
consumption reduction. The collection of INACTIVE nodes is ordered in ascending order of power
consumption, first by the max power consumption attribute, then by the min power consumption

attribute if the previous values are the same. If two nodes have both attributes equal, they are
compared against their performance in descending order, with the most performant nodes appearing
first. The final resulting list begins with all of the most power-efficient nodes and ends with the most
energy-hungry nodes. Starting at the top of the list, the number of nodes that must be bootstrapped
is determined by the difference between the count data argument and the current count. It should
be noted that the Cluster Autoscaler’s Automatic Upscaling request is typically not aggressive and
only involves one node. As a result, only the first node at the top of the list is typically selected and
involved in the bootstrapping process.
The preceding information and strategies for cluster Upscaling are condensed in the following steps
and visually depicted in Figure 3.21:

1. A Cluster Autoscaler or Administrator entity submits a request to the GraphQL mutation
updateNodePool with the node pool’s identifier (id argument) and a count value higher than
the current count. To allow the entity to perform the action, a valid JWT token must be supplied
in the Authorization header.
As an example, the identified node pool is 460d17d5-96ff-4e56-815c-e3367c60ae0d, the count
value is 2, and the current count is 1.

2. The count value is compared to the current one to determine whether the number of nodes in
the corresponding node group should be Increased (Upscaled) or Decreased (Downscaled).
The requested operation is to Increment the number of nodes in the node pool because the
count value is higher. Moreover, it is also calculated the difference between the two values to
determine the number of nodes to bootstrap.
Because the provided count is higher than the existing count, the Increase operation is selected.
The difference (N) number is 1.

3. The Database is queried to obtain the list of INACTIVE nodes in the associated node pool that
also supports WoL.

4. By comparing the max power consumption and/or min power consumption attributes, the list
is ordered in ascending order of power consumption. If the latter two attributes for some nodes
are identical, they are sorted by performance score in descending order.

5. N nodes are selected starting at the top of the list, where the most power-efficient nodes are
located. A Magic Packet in broadcast is sent for each of these N nodes, targeting the MAC address
of the associated node’s NIC. After that, the status of each node is updated to BOOTING.
The single most power-efficient node is selected (NODE 1) and the Magic Packet targeting its
NIC MAC address is sent. The status is then updated to BOOTING.

6. The requested N nodes are successfully bootstrapped, and following the initialization procedure,
they join the Kubernetes cluster.

82

updateNodePool (
 id: "...-e3367c60ae0d",
 data: {
 count: 2
 }
)

Cluster
Autoscaler

Administrator

GraphQL
API

Increase
or

Decrease

Increase

Search
INACTIVE

Sort
Wake-on-Lan
Magic Packet

N nodes

NODE 0
N = count - current_count

NODE 1

NODE 0

NODE 1

UPSCALING

Figure 3.21: Upscaling scheme

3.3.4 Downscaling

NODE 0

ACTIVE_READY

NODE 1

ACTIVE_READY

DOWNSCALING

NODE 0

ACTIVE_READY

NODE 1

INACTIVE

This section illustrates how the Server implementation performs
the Downscaling procedure to enable ACTIVE nodes to be re-
motely powered off employing SSH.
SSH (Secure Shell) is a protocol for secure remote login from one
machine to another. SSH is used in the cluster implementation to
remotely issue the poweroff190 command to the corresponding
node that needs to be Downscaled. The SSH remote connection
is immediately closed (automatic disconnection) by the Server
as soon as the command is successfully issued to prevent poten-
tial errors because the Downscaled node begins the shutdown

procedure, which includes killing all processes, including the SSH Server process itself. Every node in
the cluster has an SSH Server that accepts remote connections. The SSH Server process is continuously
monitored by the corresponding Init System deployed on the node, and if it fails for any reason, it is
resumed automatically. To issue the poweroff command, the Server implementation involves an SSH

Client that establishes a secure and remote connection with the associated SSH Server by specifying the
node’s IP address. Both the SSH Server on the nodes and the SSH Client on the Server component must
be properly configured with correct parameters, certificates, and keys, or the request for a connection
from Client to Server will be promptly denied, resulting in the failure of the Downscaling procedure.
During the installation procedure, the installer script configures the SSH Server, replacing any previ-
ous configuration with the one provided. The SSH Client configuration, on the other hand, is part
of the Server and is thus performed with the same approach (see section 3.3.6). The current cluster
implementation configures SSH in accordance with the best practices outlined in the article ”Secure
Secure Shell”191: Only the Ed25519192 high-speed, high-security digital signature scheme is allowed,
and only the most secure Ciphers and MACs are enabled. Because the latter are only configuration
files, the organization can easily change and customize them to reflect different requirements. Having
all cluster nodes pre-configured with SSH allows extra and diverse capabilities: Administrators can use
an SSH Client to remotely connect to a node and perform various operations such as interactive and/or
automated file transfers, whereas the use of automation tools such as Ansible193 or Terraform194 allow
performing operations in parallel and in the same programmatic way, enabling another solution of
configuring/managing the cluster via an Infrastructure as a Code. Finally, if the cluster is deployed in
an Air-Gap environment and/or relying on SSH for remotely issuing the poweroff command is deemed
unnecessary or too verbose for an organization, other non-protected and unsecure login protocols, such
as telnet or rlogin, exist and can be used to achieve the same result. The cluster implementation
currently only supports SSH, but extending support for other alternatives and/or unsecure protocols
should be relatively simple.
Two GraphQL mutations support the Downscaling procedure:

190https://linux.die.net/man/8/poweroff
191https://stribika.github.io/2015/01/04/secure-secure-shell.html
192https://ed25519.cr.yp.to/ed25519-20110926.pdf
193https://www.ansible.com
194https://www.terraform.io

83

https://linux.die.net/man/8/poweroff
https://stribika.github.io/2015/01/04/secure-secure-shell.html
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://www.ansible.com
https://www.terraform.io

1. updateNodePool
The first mutation is very similar to the process outlined for Upscaling. The Downscaling pro-
cedure is triggered when the count field in the data argument is set to a value smaller than
the current one. The number of ACTIVE nodes in the associated node pool that must be ter-
minated is the difference between the current count and the count argument. The collection
of current ACTIVE nodes is arranged in the same way as the Upscaling procedure, using the
same attributes and the same priority order. The sorting order, however, is inverted, so the
max power consumption and min power consumption attributes are ordered in descending or-
der while the performance is ordered in ascending order. The final list starts with the most
energy-hungry (least power-efficient) nodes and ends with the most power-efficient (least energy-
hungry) nodes. The number of nodes that must be terminated, starting at the top of the list, is
equivalent to the previously stated difference between the current count and the count field.
Before completely terminating a node, it must be drained (automatically performed by the Clus-
ter Autoscaler before calling the GraphQL mutation) and deleted from the Kubernetes cluster
(status ACTIVE DELETING), resulting in all of its deployments being safely migrated without out-
ages and the node being completely removed by the Kubernetes cluster, stopping the K8s Agent
and its monitoring. The latter action is asynchronous, and once completed, the Server retrieves
the IP address of the associated node, initiates an SSH remote connection to the SSH Server, and
issues the poweroff command, effectively terminating the node. When the latter is finished, the
node’s status is updated to INACTIVE. The node’s ACTIVE status lasts only a few seconds, from
when the Server is notified of the Kubernetes removal to when the command is properly issued
via SSH.
It should be noted that the Server is notified of the node’s successful removal from Kubernetes
by utilizing the same monitoring system discussed in section 3.3.5, which is also used to keep the
node’s status updated. As a result, the implementation meets two requirements with a single
efficient solution.

2. unassignNode
The second mutation is much simpler than the first because it does not require the entire sec-
tion of Increase/Decrease, filtering, and sorting because the node to be terminated is already
provided as an argument (id).
The complete termination procedure, which includes draining and deleting the node from Ku-
bernetes and then remotely terminating via SSH, is the same as previously described.

The important distinction between the two mutations is that updateNodePool is generic in that it
is most concerned about how many and which nodes need to be terminated, whereas unassignNode
is specific in that it allows to specifically identify which node needs to be terminated. Because most
Downscale operations are performed on a single and known a priori node, the mutation unassignNode

is the obvious and preferred option. The latter is especially noticeable in the Cluster Autoscaler,
which knows which nodes are underutilized and for how long thanks to continuous monitoring. If one
of the latter nodes exceeds a predefined time threshold, the Cluster Autoscaler makes a request to the
unassignNode mutation, specifying the identifier of the underutilized node. As previously mentioned,
when the Cluster Autoscaler sends the Downscaling request, the Drain operation is much quicker
because it has almost already been performed by the Cluster Autoscaler itself and/or the residual
number of deployments are extremely low.
The preceding information and strategies for cluster Downscaling are condensed in the following steps
and visually depicted in Figure 3.22:

1. A Cluster Autoscaler or Administrator entity submits a request to one of the two GraphQL
mutations with a valid JWT token supplied in the Authorization header:

• updateNodePool

(a) The request includes the node pool’s identifier (id argument) and a count value lower
than the current count.
As an example, the identified node pool is 460d17d5-96ff-4e56-815c-e3367c60ae0d,
the count value is 1, and the current count is 2.

84

(b) The Database is queried to obtain the list of ACTIVE READY nodes in the associated
node pool.

(c) By comparing the max power consumption and/or min power consumption attributes,
the list is ordered in descending order of power consumption. If the latter two attributes
for some nodes are identical, they are sorted by performance score in ascending order.

(d) N nodes are selected starting at the top of the list, where the less power-efficient nodes
are located.

(e) For each selected node: Continue to parent step 2.

• unassignNode

(a) The request includes the node identifier (id argument).
As an example, the identified node is e64fd01e-03c4-435b-9b02-32dfed936507.

(b) The database is queried to obtain information about the corresponding node.

(c) Continue to parent step 2.

2. The corresponding Kubernetes node is drained and deleted.
The node’s status is updated to ACTIVE DELETING.

3. The previous operation is completed and the Server is notified that the node was successfully
deleted from Kubernetes.
The node’s status is updated to ACTIVE.

4. The Server retrieves the corresponding node’s IP address, establishes an SSH remote connection
to the SSH Server, and issues the poweroff command.
The node’s status is updated to INACTIVE.

5. The node has been successfully terminated, and the Kubernetes cluster now has one fewer node.

updateNodePool (
 id: "...-e3367c60ae0d",
 data: {
 count: 1
 }
)

Cluster
Autoscaler

Administrator

GraphQL
API

Increase
or

Decrease

Decrease

Search
ACTIVE_READY

Sort

SSH
Node

N = current_count - count

unassignNode (
 id: "...-32dfed936507"
)

GraphQL
API

Search
id: "...-32dfed936507"

NODE 0 NODE 0

NODE 1NODE 1Drain
&

Delete

N nodes

DOWNSCALING

Figure 3.22: Downscaling scheme

3.3.5 Monitoring

The Server component must continuously monitor the currently active nodes to grasp their status

and determine whether a node has been successfully Added, Updated, or Deleted.
Implementing a monitoring system from scratch that is based on periodic updates via Heartbeat mes-
sages and is also reliable, scalable, performant, and simple to use is a challenging task.
Because the cluster is built around Kubernetes, a monitoring system with periodic Heartbeat messages
is already in place, satisfying all of the preceding requirements. As a result, the Server implementation
takes advantage of the latter, thanks to the use of a Kubernetes Informer195.

195https://github.com/kubernetes-client/javascript/blob/master/src/informer.ts

85

https://github.com/kubernetes-client/javascript/blob/master/src/informer.ts

A Kubernetes Informer employs the Kubernetes API to List and Watch a specific resource or a
group of resources. To prevent performance degradation and potentially useless requests (the resource
has not been changed since the last request), the Informer does not constantly query (polling) the
Kubernetes API. Instead, the Informer queries the resource(s) and stores the result in a local/inter-
nal cache, and an event (Create, Update, or Delete) is only triggered/generated when the cached
resource(s) differs from the one available through the Kubernetes API. The latter outlined Kubernetes
Informer is only an oversimplification of how it works and how it is internally implemented, but it
is critical to understand that it provides a powerful, yet simple-to-use and configure, mechanism for
monitoring cluster nodes.
The Kubernetes Informer can be considered as a subscription mechanism in which the Server com-
ponent subscribes to the Node resource and whenever the resource changes, an event callback (Add,
Update, or Delete) is triggered.
The monitoring system is implemented by the Server through a specialized class called NodeInformer196,
which encapsulates the Kubernetes Informer and is subscribed to all possible events concerning the
Node resource. When the Kubernetes Informer triggers an event, the NodeInformer class’s associ-
ated callback method is called. A callback function is only a frontend interface to a Kubernetes event,
with the actual business logic delegated to one of the many Services based on the event that triggered
the callback. The NodeInformer class, and thus the Kubernetes Informer, are only instantiated once
when the Server bootstraps and terminated when the Server itself terminates.
Figure 3.23 depicts the monitoring scheme and the interaction of the previously mentioned compo-
nents.

Re�ector

Delta FIFO

Local
Cache

Write

API
Server

 Add

 Update

 Delete

Callback

List & Watch

Services
 Controller

 K8s Informer

 Node Informer

 Server

Figure 3.23: Monitoring scheme

The following list depicts the various NodeInformer callbacks and their purposes:

• onAdd(node)

A new node resource has been added.
Update the associated node record with the acquired IP address and status.

• onUpdate(node)

A node resource has been updated.
Update the associated node record with the acquired IP address and status.

• onDelete(node)

A node resource has been deleted.
Terminate (poweroff) the associated node. The latter procedure also updates its status.

196https://github.com/carlocorradini/reCluster/blob/main/server/src/k8s/NodeInformer.ts

86

https://github.com/carlocorradini/reCluster/blob/main/server/src/k8s/NodeInformer.ts

• onConnect()

Informer has successfully connected and is started monitoring the associated resource (Node).

• onError(error)

Informer has encountered an error.
After 3 seconds, it automatically restarts. The latter value is configurable.

3.3.6 Configuration

The Server implementation is fully customizable, with two methods available.
The first method is to use a TypeScript configuration file, named config.ts197, that contains all of
the setting parameters and structures used by the Server. Because it is a pure TypeScript file, it can
be imported and used directly by other TypeScript source files with no additional steps.
The second method, which is more commonly used for application configuration, employs the use
of environment variables198. Because polluting the environment with a multitude of variables is not
a good practice, only the most significant and/or required configuration parameters are available.
If an environment variable is provided, it overrides the default value assigned in the first method’s
TypeScript configuration file (config.ts). As a result, even though it only supports a subset of all
possible configuration parameters, the second approach has a higher precedence than the first.
It would take too much space to explain all of the available configuration parameters that the Server
implementation can be customized with, and some are self-explanatory, such as the name parameter,
which specifies the application name, while others are almost immutable and rarely change. As a
result, the following table only describes all of the configuration parameters and thus the environment
variables that can be customized using the second method.

Name Required Description Default Value

NODE ENV é Node.js environment.
Different environments enable or disable
certain Server components or features. For
example, in production, the GraphQL
Studio Explorer199 is disabled, whereas it
is enabled in all other environments.
The following environments are supported:

• development

• production

• test

production

HOST é Listening address(es). 0.0.0.0

PORT é Listening port. 80

197https://github.com/carlocorradini/reCluster/blob/main/server/src/config/config.ts
198https://github.com/carlocorradini/reCluster/blob/main/server/src/config/env.ts

87

https://github.com/carlocorradini/reCluster/blob/main/server/src/config/config.ts
https://github.com/carlocorradini/reCluster/blob/main/server/src/config/env.ts

LOGGER LEVEL é Logging level.
Attachment C provides additional informa-
tion regarding logging and logging levels.
The following logging levels are supported
(listed in descending order of importance):

7 silent

6 fatal

5 error

4 warn

3 info

2 debug

1 trace

info

DATABASE URL Ë Database URL.
The current implementation is dependent
on PostgreSQL and therefore the URL must
be a valid PostgreSQL connection string.

SSH USERNAME é SSH username. root

SSH PRIVATE KEY Ë SSH private key (identity file).

SSH PASSPHRASE é SSH passphrase.
The passphrase used to encrypt the SSH pri-
vate key’s sensitive section.
Because the default cluster implementation
does not involve any passphrase, it is not
required.

TOKEN PRIVATE KEY Ë JWT private key.
The private key used to sign the JWT.

TOKEN PUBLIC KEY Ë JWT public key.
The public key used to verify the JWT.

TOKEN PASSPHRASE é JWT passphrase.
The passphrase used to encrypt the JWT pri-
vate key’s sensitive section.
Because the default cluster implementation
does not involve any passphrase, it is not
required.

Table 3.4: Server configuration environment variables

3.4 Autoscaling
Autoscaling dynamically increases (upscale) or decreases (downscale) the number of cluster resources
(limits, replicas, and nodes) that are allocated.

The cluster must be able to automatically perform autoscaling procedures to independently and
autonomously change the resource limits of pods, number of replicas (pods), and number of nodes,
requiring no or minimal human/manual intervention.
Kubernetes includes three Autoscaler components that perform automatically and autonomously the
previous autoscaling procedures: Vertical Pod Autoscaler (see section 3.4.1) modifies the resource
limits of the pods, Horizontal Pod Autoscaler (see section 3.4.2) modifies the number of replicas
(pods), and Cluster Autoscaler (see section 3.4.3) modifies the number of nodes in the cluster.

199https://www.apollographql.com/docs/graphos/explorer/explorer

88

https://www.apollographql.com/docs/graphos/explorer/explorer

Because autoscaling (Vertical, Horizontal, and Cluster) is not the primary emphasis of the
document, this section is not dedicated to explaining it in depth and how it is implemented. Rather, it
is intended to provide a high-level overview of the three autoscaling mechanisms and their Kubernetes
implementations. The only exception is the Cluster Autoscaler, because it necessitates a custom
implementation built on top of the existing one to be compatible with the specific cluster environment
(cloud provider).

3.4.1 Vertical Pod Autoscaler

CPU: 500m
Memory: 512Mi

NODE

CPU: 1000m
Memory: 1024Mi

NODE
VERTICAL

POD
AUTOSCALER

Vertical Pod Autoscaler200 (VPA) adjusts a
Pod’s resource attributes (requests and limits)
automatically.

Pods are executed with unbounded resource
constraints by default and can thus utilize as
much as the amount of available resources on the
Node. To address this and other potential is-
sues, a global policy can be defined via a Limit

Range201, which allows particular types of objects (such as Pod or PersistentVolumeClaims) to be
limited in the quantity of allocable resources. The latter only partially solves the problem because it
does not allow for a finer-grained resource definition for each possible scheduled object deploymen-
t/instance, because some Pods may require fewer resources, resulting in resource waste, while others
may require/need more resources, resulting in performance degradation and/or service outages.
Kubernetes enables the fine-grained definition of the amount of resources that a Pod necessitates, com-
monly CPU and Memory. There are two kinds of resource definitions available: request and limit202.
The resources request is the bare minimum of resources that the Pod necessitates. The
kube-scheduler203 component, which monitors for newly created Pods with no Node designated,
uses this information to determine which Node is the best choice for the Pod to be scheduled on.
When a Pod is deployed to a Node, the kubelet204 component reserves the Node’s desired resources
request exclusively for the Pod.
The resources limit is the highest amount of resources that the Pod can use. The kubelet component
enforces these constraints on a Pod, preventing it from utilizing more than what has been defined.
These limits can be applied either reactively (when a violation is detected) or by enforcement

(prevents the container from ever exceeding the limits).
If the Node where the Pod is deployed has sufficient free resources, the Pod may use more resources
than the defined request amount while not exceeding the defined limit.
Manually defining a Pod’s resources request and resources limit is a challenging task because it
can result in resource waste if the values are set too high, as well as potential service outages and/or
performance degradation if the values are set too low. The latter issues are the same as when the
Limit Range approach is used.
Vertical Pod Autoscaler (VPA) relieves users from the burden of manually, accurately, and consis-
tently updating the resources limit and request of a Pod. The VPA automatically sets the values of
resources request and resources limit based on Pod utilization over time, providing for an improved
scheduling mechanism that ensures the proper resource amount is available for each Pod scheduled
on a Node. Moreover, the VPA can maintain the same resource ratio between request and limit

that the user initially defined. As a result, the VPA downscales Pods that over-request resources and
upscales Pods that under-request resources.

200https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
201https://kubernetes.io/docs/concepts/policy/limit-range
202https://kubernetes.io/docs/concepts/configuration/manage-resources-containers
203https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler
204https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet

89

https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://kubernetes.io/docs/concepts/policy/limit-range
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet

3.4.2 Horizontal Pod Autoscaler

NODE

Pod 1

NODE

Pod 1

HORIZONTAL
POD

AUTOSCALER Pod 2

Pod 3 Pod 4

Horizontal Pod Autoscaler205 (HPA) adjusts
the number of Pods (replicas) automati-
cally.

Manually defining the number of Pods for a
deployment is a difficult task that, like in the
VPA, if not properly configured can result in re-
source waste and/or service disruptions.
The previously described resource request and

limit must be specified when defining the Pod configuration. They are employed to establish the
single resource or average resource utilization measurements of all Pods and whether an upscale (add
replicas) or downscale (remove replicas) action is required.
The HPA configuration must target a specific application deployment and must include a minimal
number of replicas and a maximum number of replicas. The minimal number of replicas is used to
determine a lower bound (inclusive) level below which the HPA terminates any downscale operation.
The maximum number of replicas is used to determine an upper bound (inclusive) level that cannot
be exceeded, and the HPA stops any upscale operation. The final required parameter for the HPA is
to specify a collection of metrics that indicate when to perform any autoscaling operation based on
what resource types and their corresponding values to monitor. The CPU and Memory resources, as
well as their average value, are the most common metric types. As an example, suppose the HPA is
set to monitor the CPU metric with an average resource utilization of 50%. The HPA adds or removes
Pods until the deployment’s average CPU utilization is near 50%. If the average utilization is greater
than 50%, the HPA would then upscale by adding more Pods, whereas if the average utilization is less
than 50%, the HPA would then downscale by removing Pods.
Although the resource attributes used are similar to those employed by the VPA, the HPA behavior,
execution, and algorithm are significantly different because the VPA scales the resources of a Pod
while the HPA scales the number of Pods. It should be noted that HPA cannot be used alongside
VPA on the same resources, and horizontal scaling is only suitable for stateless applications.
Horizontal Pod Autoscaler (HPA) relieves users from the burden of manually, accurately and consis-
tently updating the number of Pods for a specific deployment by leveraging metrics monitoring and
utilization.

3.4.3 Cluster Autoscaler

CLUSTER
NODE 1 NODE 2

NODE 3 NODE 4

NODE 1 NODE 2

NODE 3 NODE 4

CLUSTER

CLUSTER
AUTOSCALER

Cluster Autoscaler206 (CA) adjusts the number
of Nodes automatically.

Because the CA has already been extensively
described in section 2.1.5, this section is devoted
to showing how it is intended to interface with the
Server component (and, more broadly, with the

cluster implementation) for upscaling (see section 3.3.3 and section 3.4.3.2) or downscaling (see section
3.3.4 and section 3.4.3.3) operations. Finally, are mentioned some of the most important configuration
parameters that can be modified to adjust the CA and its general autoscaling responsiveness/behavior
to better fit the use-case situation of the organization maintaining the cluster.
Unlike the prior autoscalers, where only VPA or HPA could be used to monitor the same resources, CA
can be used alongside both of them because it depends on different metric objects and has a different
end goal. The combination of HPA and CA in the cluster is especially recommended. If the HPA
attempts to schedule a number of Pods that exceed the current cluster capacity, the CA responds by
increasing the total number of active nodes in the cluster, allowing un-schedulable/waiting Pods (Pods
waiting to be assigned to a Node with enough free resources) to be scheduled on the newly booted

205https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
206https://github.com/carlocorradini/autoscaler/tree/master/cluster-autoscaler

90

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://github.com/carlocorradini/autoscaler/tree/master/cluster-autoscaler

node. If the HPA decreases the number of Pods, reducing the overall cluster workload, and a Node
remains underutilized, the CA responds by migrating the Pods scheduled on the Node to another
Node, decreasing the total number of active nodes in the cluster[10].

3.4.3.1 Cloud Provider

The CA implementation differs from the previous two autoscalers in that it is not restricted to the
Kubernetes cluster boundaries but also involves the external cluster managed by the so-called Cloud
Provider. As a result, the CA must have a dedicated implementation built on top of the core CA
implementation to support the specific Cloud Provider that manages the underlying cluster in order
to automatically upscale (increase the number of nodes) and/or downscale the cluster (decrease the
number of nodes).
The distinction between the two boundaries has already been extensively discussed using the word
knowledge. The CA has a high-level knowledge of the cluster (Kubernetes) and information about the
active Nodes and Pods, so it can determine when to perform an autoscaling operation, but it lacks
a low-level understanding of how to do so. As a result, it must rely on the Cloud Provider’s Server
implementation, which has complete low-level knowledge of how to bootstrap or terminate the Nodes
in the cluster but lacks the high-level knowledge of when to do so. As a result, the CA and the Server
cooperate to accomplish the common autoscaling objective by combining their knowledge.
The official CA implementation is only compatible with big private and enterprise-oriented Cloud
Providers like AWS, Azure, and GCP. As a result, a custom implementation of a Cloud Provider,
known as recluster207, has been developed that is compatible with the architecture outlined in
this document. Furthermore, the recluster implementation is smaller in size than the official CA
distribution because the official one needs to be compatible with every Cloud Provider (hence more
code), whereas the custom implementation is only compatible with the recluster architecture and
excludes the other Cloud Providers (hence reducing the code).
The Cloud Configuration (cloud-config) file is required by the CA to configure the custom Cloud
Provider. The recluster Cloud Configuration is a JSON file that contains the two following attributes:

1. token
JWT security token.
It is included in the Authorization header of every request to the Server’s GraphQL API.

2. url
Server URL.
The complete Server URL, including potential routes such as /graphql.

3.4.3.2 Upscaling

When the Cluster Autoscaler core needs to perform an upscaling operation, it employs the increaseSize
function callback from the associated Cloud Provider implementation.

The increaseSize function takes two parameters. The first parameter, nodePool, is a pointer to
the node pool on which the upscaling operation must be performed. The second parameter, delta,
is a value that specifies the number of nodes that must be bootstrapped. The most common value of
delta is 1.
Listing 3.11 illustrates the pseudocode of the recluster Cloud Provider’s upscaling function callback,
and the following summary outlines its main steps:

1 Check that delta is strictly greater than zero; otherwise, an error is thrown.
A delta value less than 0 indicates a downscaling operation rather than an upscaling operation,
while a delta value identical to 0 indicates no scaling operation and thus both are invalid values.

2 Calculate the new count value (newCount).
The value is determined by adding the current count value of the node pool to the delta value.

207https://github.com/carlocorradini/autoscaler/tree/master/cluster-autoscaler/cloudprovider/recluste

r

91

https://github.com/carlocorradini/autoscaler/tree/master/cluster-autoscaler/cloudprovider/recluster
https://github.com/carlocorradini/autoscaler/tree/master/cluster-autoscaler/cloudprovider/recluster

3 Check that newCount is not greater than the maximum number of nodes allowed in the corre-
sponding node pool (max nodes); otherwise, an error is thrown.
It is important to note that if the value is identical to the maximum, it is accepted.

4 Send a GraphQL request to the mutation updatedNodePool with the appropriate node pool
identifier (id argument) and the updated count value in the data argument. The variable
updatedNodePool holds the updated node pool.
Because it is an external request, it can fail, but this is omitted from the pseudocode for clarity.

5 Compare the updated count value (updatedNodePool.count) to the new count value (newCount)
computed to ensure that the updated node pool has been correctly updated. An error is thrown
if the two values are not identical.

6 Update the provided node pool’s count (nodePool.count) value with the updated node pool’s
count (updatedNodePool.count) value.

1 function increaseSize(nodePool, delta) {

2 if (delta <= 0) throw new Error(); 1

3

4 const newCount = nodePool.count + delta; 2

5

6 if (newCount > nodePool.max_nodes) throw new Error(); 3

7

8 const updatedNodePool = GraphQL.updateNodePool(nodePool.id, { count: newCount }); 4

9

10 if (updatedNodePool.count != newCount) throw new Error(); 5

11

12 nodePool.count = updatedNodePool.count; 6

13 }

Listing 3.11: Pseudocode of increaseSize function callback

3.4.3.3 Downscaling

When the Cluster Autoscaler core needs to perform a downscaling operation, it can use one of
the two function callbacks from the associated Cloud Provider implementation, decreaseSize and
deleteNodes.
As previously described in section 3.3.4, when performing a downscaling operation in the cluster, it can
be very general (updateNodePool) by specifying only the number of Nodes belonging to a node pool
that need to be downscaled, or very specific (unassignNode) by specifying the exact Node identifier
of the Node that needs to be downscaled. In this section, the more general approach implemented by
the function decreaseSize is explained first, followed by the more specific approach implemented by
the function deleteNodes. It should be noted that in recluster, probably due to its small size, the
CA is very specific about which Node(s) should be downscaled, therefore it consistently employs the
more specific callback function deleteNodes.

The decreaseSize function takes two parameters and is very similar to the increaseSize function
in that it does the exact opposite. The first parameter, nodePool, is a pointer to the node pool on
which the downscaling operation must be performed. The second parameter, delta, is a value that
specifies the number of nodes that must be terminated. The most common value of delta is -1.
Listing 3.12 illustrates the pseudocode of the recluster Cloud Provider’s downscaling function callback,
and the following summary outlines its main steps:

1 Check that delta is strictly lower than zero; otherwise, an error is thrown.
A delta value greater than 0 indicates an upscaling operation rather than a downscaling opera-
tion, while a delta value identical to 0 indicates no scaling operation and thus both are invalid
values.

92

2 Calculate the new count value (newCount).
The value is determined by adding the current count value of the node pool to the delta value.
Even though the operation is identical to that of the increaseSize function, the resulting value
is less than the current count value because delta is a negative value and thus sum over a
negative number is a subtraction: X + (−Y) = X − Y .

3 Check that newCount is not lower than the minimum number of nodes allowed in the corre-
sponding node pool (min nodes); otherwise, an error is thrown.
It is important to note that if the value is identical to the minimum, it is accepted.

4 Send a GraphQL request to the mutation updatedNodePool with the appropriate node pool
identifier (id argument) and the updated count value in the data argument. The variable
updatedNodePool holds the updated node pool.
Because it is an external request, it can fail, but this is omitted from the pseudocode for clarity.

5 Compare the updated count value (updatedNodePool.count) to the new count value (newCount)
computed to ensure that the updated node pool has been correctly updated. An error is thrown
if the two values are not identical.

6 Update the provided node pool’s count (nodePool.count) value with the updated node pool’s
count (updatedNodePool.count) value.

1 function decreaseSize(nodePool, delta) {

2 if (delta >= 0) throw new Error(); 1

3

4 const newCount = nodePool.count + delta; 2

5

6 if (newCount < nodePool.min_nodes) throw new Error(); 3

7

8 const updatedNodePool = GraphQL.updateNodePool(nodePool.id, { count: newCount }); 4

9

10 if (updatedNodePool.count != newCount) throw new Error(); 5

11

12 nodePool.count = updatedNodePool.count; 6

13 }

Listing 3.12: Pseudocode of decreaseSize function callback

The deleteNodes function takes two parameters. The first parameter, nodePool, is a pointer to
the node pool on which the downscaling operation must be performed. The second parameter, nodes,
is an array of the (active) Nodes that need to be terminated. Because the array usually contains only
one Node, it has a corresponding length of 1.
Listing 3.13 illustrates the pseudocode of the recluster Cloud Provider’s downscaling function callback,
and the following summary outlines its main steps:

1 Check that the node’s array length (number of Nodes) is strictly greater than zero; otherwise,
an error is thrown.
A length value lower than zero 0 indicates an unexpected value because the length of an array
must always be larger than or equal to 0, whereas a length value equal to 0 indicates no scaling
operation and thus both are invalid values.

2 Calculate the new count value (newCount).
The value is determined by subtracting the current count value of the node pool from the length
of the nodes’ array.

3 Check that newCount is not lower than the minimum number of nodes allowed in the corre-
sponding node pool (min nodes); otherwise, an error is thrown.
It is important to note that if the value is identical to the minimum, it is accepted.

93

4 Iterate through the array’s nodes.
The variable i represents the index of the array’s ith node.

5 Send a GraphQL request to the mutation unassignNode with the appropriate Node identifier
(id argument). The variable deletedNode holds the deleted/terminated node.
Because it is an external request, it can fail, but this is omitted from the pseudocode for clarity.

6 Decrement the provided node pool’s count (nodePool.count) value by one (-1).
After repeating the same procedure for each Node, the node pool’s count value is identical to
the new count (newCount) value.

1 function deleteNodes(nodePool, nodes) {

2 if (nodes.length <= 0) throw new Error(); 1

3

4 const newCount = nodePool.count - nodes.length; 2

5

6 if (newCount < nodePool.min_nodes) throw new Error(); 3

7

8 for (let i = 0; i < node.length; i = i + 1) { 4

9 const deletedNode = GraphQL.unassignNode(nodes[i].id); 5

10

11 nodePool.count = nodePool.count - 1; 6

12 }

13 }

Listing 3.13: Pseudocode of deleteNodes function callback

3.4.3.4 Configuration

The most significant configuration parameters of the Cluster Autoscaler that can be adjusted to
better meet the requirements of the organization in charge of the cluster are listed in table 3.5.
These parameters can be modified to increase the CA’s responsiveness, making it more aggressive for
any autoscaling procedure, or to decrease the CA’s responsiveness, making it less aggressive for any
autoscaling procedure.
The complete list of CA parameters supported is accessible at https://github.com/carlocorradin
i/autoscaler/blob/master/cluster-autoscaler/FAQ.md#what-are-the-parameters-to-ca.

Name Description Default Value

cloud-provider Cloud Provider (<NAME>). recluster

cloud-config Path to the Cloud Configuration file
(<FILE>).

kubeconfig Path to the kubeconfig208 file
(<FILE>).
If the parameter is not provided,
the CA attempts to acquire the
kubeconfig directly from the Kuber-
netes cluster where it was deployed.
The latter implies that the CA has
been configured with the appropri-
ate permissions (this is the case in
recluster).

scale-down-delay-after-add The time frame during which the CA
is logically disabled from executing
a downscaling operation after having
successfully executed an upscaling op-
eration (<TIME>).

10m

94

https://github.com/carlocorradini/autoscaler/blob/master/cluster-autoscaler/FAQ.md#what-are-the-parameters-to-ca
https://github.com/carlocorradini/autoscaler/blob/master/cluster-autoscaler/FAQ.md#what-are-the-parameters-to-ca

scale-down-delay-after-delete The time frame during which the CA
is logically disabled from executing
a downscaling operation after having
successfully executed another down-
scaling operation (<TIME>).
The default value is the same as the
value of the scan-interval parame-
ter.

scan-interval

scale-down-delay-after-failure The time frame during which the CA
is logically disabled from executing
a downscaling operation after having
unsuccessfully executed another down-
scaling operation (<TIME>).

3m

scale-down-unneeded-time The duration that a Node should be
unneeded (underutilized) before it is
suitable for downscaling (<TIME>).

10m

scale-down-unready-time The duration that a Node should
be unready (ACTIVE NOT READY status
and/or UNKNOWN status) before it is
suitable for downscaling (<TIME>).

20m

scale-down-utilization-threshold Node utilization level (<LEVEL>).
It is defined as the total of requested
resources divided by the capacity, be-
low which a node is suitable for down-
scaling.

0.5

scan-interval Time interval after which the cluster is
evaluated for upscaling or downscaling
(<TIME>).

10s

skip-nodes-with-system-pods If true, never downscale Nodes with
Pods from the kube-system209 names-
pace (except for DaemonSet or mirror
pods).

true

skip-nodes-with-local-storage If true, never downscale Nodes with
Pods that have persistency storage
of type local storage (EmptyDir or
HostPath).

true

Table 3.5: Cluster Autoscaler parameters

3.5 Installer
The installer is a POSIX script named install.sh210 that contains approximately 3000 lines of code
and is specifically designed to help administrators install the cluster implementation on a Node. It
is highly configurable and can bootstrap a cluster from scratch if the --init-cluster parameter is
specified. When the script is properly configured, all actions are performed automatically, exonerating
the administrator of all responsibility. The overall installation procedure can take up to 10 minutes,
depending on what components need to be installed and whether or not it is deployed in an Air-Gap
environment.
Many previously described concepts and components are found in this section and are merged to

208https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig
209https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
210https://github.com/carlocorradini/reCluster/blob/main/install.sh

95

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces
https://github.com/carlocorradini/reCluster/blob/main/install.sh

create a final and functional cluster implementation. It should be noted that the resulting cluster can
be considered a unique entity in which each component collaborates with other components to keep
the cluster healthy, stable and consistent.
This section begins by briefly explaining the benchmark and power consumption procedures, followed
by a high-level view of the script’s steps, and concludes by listing all of the supported configuration
parameters and the configuration files employed during the installation procedure.

3.5.1 Benchmarks

Specific benchmarks are required to evaluate all of the different hardware components of a Node.
As stated in previous sections, the resulting data scores are then used to understand the overall
performance of the Node as well as the individual performance of the hardware components that
comprise it.
The program selected to evaluate the system is sysbench211, which allows benchmarking the CPU in
single-thread and multi-thread, the memory in random/sequential read/write modes, and the different
persistent storages in read/write modes.
A benchmark has a fixed time duration, which can be specified using the --bench-time parameter.
Moreover, the sysbench application takes a configurable amount of time to warm the system before
executing a benchmarking operation.
It should be noted that the final score number is specific to the sysbench application; thus, if the
company desires to use a different application after having deployed the cluster, all benchmarks data
must be retaken because the scores of the two applications may be incompatible.

3.5.2 Power Consumption

Figure 3.24: CloudFree
EU Smart Plug

To determine the power consumption of the Node and to attempt to eval-
uate the power consumption of each hardware component, an external
device capable of detecting the system’s current draw is required. Further-
more, the device must include a basic but powerful API that enables the
script to query for the current power consumption to obtain meaningful
data over a specified period.
Figure 3.24 depicts the device used in the cluster, which is a CloudFree212

EU Smart Plug. Even though numerous smart plug devices can perform
the same tasks as the latter, the CloudFree device, as the name implies,
does not require an internet connection to function and is thus cloud-free.
Furthermore, it is pre-flashed with Tasmota213, an Open Source firmware for ESP devices.
Because the overall cluster implementation is built on the Tasmota firmware, the installation script
supports almost all devices that have been flashed with the Tasmota firmware in addition to the
CloudFree devices. The latter is because the API endpoint and returned JSON schema for querying
the current power consumption is the same for all Tasmota devices.
The script has a dedicated common function for reading the power consumption over a specified pe-
riod. Before starting the readings, there is a brief warming period. Following that, a request is sent
to the device with a sleep period between each request. The latter is repeated for the duration of the
total period of power consumption readings. Then, all of the readings are examined and the mean
and Sample Standard Deviation are computed. An error is thrown if the Sample Standard Deviation
value exceeds a defined tolerance.

3.5.3 Installation Procedure

The installation procedure comprises the following steps, which are executed sequentially by the
installation script. It should be noted that the name of each step corresponds to a specific function
implemented in the script.

1. parse args

Process the script’s input arguments.

211https://github.com/akopytov/sysbench
212https://cloudfree.shop
213https://tasmota.github.io

96

https://github.com/akopytov/sysbench
https://cloudfree.shop
https://tasmota.github.io

Section 3.5.4 lists the supported parameters.

2. verify system

Verify that the current system meets all of the criteria for installing recluster.
Example requirements include verifying that all necessary programs are installed and the current
Init System is supported.

3. setup system

Set up the system for the next steps.
To perform determine operations, the script needs a temporary directory, which is created in
this step.

4. read system info

Read all of the system hardware information.
All system information read is referred to as node facts (NODE FACTS).

5. run benchmarks

Run benchmark tests on each hardware component and update NODE FACTS with the results.

6. read power consumptions

Read the overall power consumption of the system, both in idle and maximum load, and try to
calculate the power consumption of each hardware component.
The corresponding read values are appended to NODE FACTS.

7. finalize node facts

Adjust some values to finalize NODE FACTS.

8. install k3s

Install K3s.

9. install node exporter

Install Node Exporter.

10. cluster init

Install and activate the Database and Server components.
This procedure must be run only once when the cluster is initialized with the argument --init-cluster.

11. install recluster

Install recluster on the node by registering the node via the Server component.
After the installation process is completed successfully, the system is configured with the Server’s
returned data and other specifications.

12. start recluster

Start the cluster-related Node components.

13. configure k8s

Set up the Kubernetes cluster.
It includes the installation of all Kubernetes components, such as the Load Balancer, Registry,
and Cluster Autoscaler. It is important to note that each component is installed in a specific
order because one component may require another component.
This procedure must be run only once when the cluster is initialized with the argument --init-cluster.

After the installation procedure has been completed, recluster is up and running.
It should be noted that the installation script also installs an uninstall script, named recluster.uninstall.sh,
that is used to completely remove all installed software and files.

97

3.5.4 Configuration Parameters

All of the installation script’s supported configuration parameters are listed in the table below:

Name Description Default Value

admin-username Administrator user-
name (<USERNAME>).

admin

admin-password Administrator pass-
word (<PASSWORD>).

Password$0

airgap Boolean flag that indi-
cates whether the cur-
rent is an Air-Gap en-
vironment.

false

autoscaler-username Autoscaler username
(<USERNAME>).

autoscaler

autoscaler-password Autoscaler password
(<PASSWORD>).

Password$0

autoscaler-version Autoscaler version
(<VERSION>).

latest

bench-time Benchmarking dura-
tion (<TIME>).

30s

certs-dir Certificates directory
(<DIR>).

configs/certs

config-file recluster config-
uration file path
(<FILE>).

configs/recluster/config.yaml

disable-color Disable any color from
the output.

false

disable-spinner Disable spinner anima-
tion.

false

help Display a help message
and terminate (suc-
cessfully).

init-cluster Boolean flag that in-
dicates whether to ini-
tialize the cluster.

false

k3s-config-file K3s configuration file
path (FILE).

configs/k3s/config.yaml

k3s-registry-config-file K3s registry configura-
tion file path (FILE).

configs/k3s/registries.yaml

k3s-version K3s version
(<VERSION>).

latest

98

log-level Logging level
(<LEVEL>).
Attachment C pro-
vides additional
information regarding
logging and logging
levels.
The following logging
levels are supported
(listed in descending
order of importance):

5 fatal

4 error

3 warn

2 info

1 debug

info

node-exporter-config-file Node Exporter con-
figuration file path
(<FILE>).

configs/node exporter/config.yaml

node-exporter-version Node Exporter version
(<VERSION>).

latest

pc-device-api Power consumption
device’s API URL
(<URL>).

http://UNKNOWN/cm?cmnd=status%2010

pc-interval Interval between the
readings of power con-
sumption (<TIME>).

1s

pc-time Power consumption
readings duration
(<TIME>).

30s

pc-warmup Power consumption
warmup (<TIME>).

10s

server-env-file Server environment
file path (<FILE>).

configs/recluster/server.env

spinner Spinner animation
(<SPINNER>).
This is regarded as an
Easter Egg214.
The following spinners
are supported:

1. dots
2. grayscale
3. propeller

ssh-authorized-keys-file SSH authorized keys
file path (<FILE>).

configs/ssh/authorized keys

ssh-config-file SSH configuration file
path (<FILE>).

configs/ssh/ssh config

99

sshd-config-file SSH server config-
uration file path
(<FILE>).

configs/ssh/sshd config

user Current system user
to install recluster
files and programs
(<USER>).

root

Table 3.6: Installer script parameters

3.5.5 Configuration Files

This section highlights the most essential portions of the configuration and Kubernetes deployment
files employed in the cluster implementation. Some portions have been removed, and the comment
... indicates where this has occurred.

The majority of the parameters and/or configuration attributes revert to what has been explained
and illustrated in all of the previous chapters and sections, therefore it is strongly advised to revise
the corresponding argument of the respective configuration/deployment file if it is unclear.
The files may require identical properties, such as the Server URL or Registry URL, with other
files. It has developed a utility POSIX script called configs.sh215 that reads a configuration file
named configs.config.yaml216 that includes all of the most frequent and important configuration
parameters. The script then substitutes an identification marker in the configuration/deployment files
with the value read from the specified configuration file. This was done to prevent a high degree of
duplication in the files as well as potential misconfiguration due to simple mistakes. The marker,
represented by the color , begins with the symbols ${{ and ends with the symbols }}, and in
the middle, there is a dot-separated string that identifies the corresponding parameter read from the
script’s configuration files. If there is no valid mapping between the identifier and the value, an error
is thrown. The comment beneath the marker indicates the resulting line with the substitute value
after the script has processed it. It should be noted that this document does not describe how the
script has been implemented and configured.
Lastly, keep in mind that these files represent the configurations of the recluster implementation and
can thus be adjusted or updated to better match the needs and/or requirements of another cluster
deployment’s organization. As an example, the IP addresses of the Load Balancer component are based
on the private network 10.0.0.0/24, but this setup may not be appropriate for other installations (it
may clash with other already deployed networks), and thus it must/can easily be modified.

3.5.5.1 K3s

K3s registries configuration file (registries.yaml217) is shown in Listing 3.14. Take note of the
relationship between the registry mirror name used in the Kubernetes deployment files and the actual
local IP address endpoint.

1 mirrors:
2 ${{ k8s.registry.mirror.host }}:${{ k8s.registry.mirror.port }}:
3 # registry.recluster.local:5000:
4 endpoint:
5 - "https://${{ k8s.registry.endpoint.host }}:${{ k8s.registry.endpoint.port }}"
6 # "https://10.0.0.200:5000"
7

8 configs:
9 ${{ k8s.registry.mirror.host }}:

10 # registry.recluster.local:
11 tls:

214https://wikipedia.org/wiki/Easter_egg
215https://github.com/carlocorradini/reCluster/blob/main/scripts/configs.sh
216https://github.com/carlocorradini/reCluster/blob/main/scripts/configs.config.yaml
217https://github.com/carlocorradini/reCluster/blob/main/configs/k3s/registries.yaml

100

https://wikipedia.org/wiki/Easter_egg
https://github.com/carlocorradini/reCluster/blob/main/scripts/configs.sh
https://github.com/carlocorradini/reCluster/blob/main/scripts/configs.config.yaml
https://github.com/carlocorradini/reCluster/blob/main/configs/k3s/registries.yaml

12 ca_file: '/usr/local/share/ca-certificates/registry.crt'
13 key_file: '/usr/local/share/ca-certificates/registry.key'

Listing 3.14: K3s registries configuration file

K3s server configuration file (config.controller.yaml218) is shown in Listing 3.15. Take note of
the token, cluster initialization flag, serverURL, and node-taint CriticalAddonsOnly=true:NoExecute.
The server parameter is only provided if the Node is not the first to be bootstrapped. If the taint is
commented, it indicates that the Node is both a Server and an Agent, and thus can accept workload;
otherwise, the Node cannot accept any workload.

1 token: "${{ k3s.token }}"
2 # token: "4646f99bc4cbae3d5eceed856b337c9d3284be0d4056a3909f780c0c385fbf93"
3 cluster-init: true
4 # server: "https://${{ k3s.server.host }}:${{ k3s.server.port }}"
5 # server: "https://10.0.0.10:6443"
6 cluster-domain: 'recluster.local'
7 flannel-backend: 'host-gw'
8 disable:
9 - 'servicelb'

10 node-taint:
11 # - 'CriticalAddonsOnly=true:NoExecute'

Listing 3.15: K3s server configuration file

K3s agent configuration file (config.worker.yaml219) is shown in Listing 3.16. The parameters
token and server are always required.

1 token: "${{ k3s.token }}"
2 # token: "4646f99bc4cbae3d5eceed856b337c9d3284be0d4056a3909f780c0c385fbf93"
3 server: "https://${{ k3s.server.host }}:${{ k3s.server.port }}"
4 # server: "https://10.0.0.10:6443"

Listing 3.16: K3s agent configuration file

3.5.5.2 K8s

Cluster Autoscaler deployment file (deployment.yaml220) is shown in Listing 3.17. Take note of the
Cloud Configuration, as well as the associated url and token attributes, in addition to the deployment
definition, which specifies the Cluster Autoscaler container image from the respective local Registry
and the command arguments.

1 # ...
2

3 ---
4 apiVersion: 'v1'
5 kind: 'Secret'
6 metadata:
7 name: 'cluster-autoscaler-secret'
8 # ...
9 stringData:

10 cloud-config: |-
11 {
12 "url": "http://${{ recluster.server.host }}:${{ recluster.server.port }}

/${{ recluster.server.path }}",
13 # "url": "http://10.0.0.10:8080/graphql",
14 "token": "${{ __.token }}"
15 # "token": "${{ __.token }}"
16 }
17

18 ---
19 apiVersion: 'apps/v1'

218https://github.com/carlocorradini/reCluster/blob/main/configs/k3s/config.controller.yaml
219https://github.com/carlocorradini/reCluster/blob/main/configs/k3s/config.worker.yaml
220https://github.com/carlocorradini/reCluster/blob/main/configs/k8s/autoscaler/ca/deployment.yaml

101

https://github.com/carlocorradini/reCluster/blob/main/configs/k3s/config.controller.yaml
https://github.com/carlocorradini/reCluster/blob/main/configs/k3s/config.worker.yaml
https://github.com/carlocorradini/reCluster/blob/main/configs/k8s/autoscaler/ca/deployment.yaml

20 kind: 'Deployment'
21 metadata:
22 name: 'cluster-autoscaler'
23 # ...
24 spec:
25 # ...
26 replicas: 1
27 template:
28 # ...
29 spec:
30 # ...
31 containers:
32 - name: 'cluster-autoscaler'
33 image: "${{ k8s.registry.mirror.host }}:${{ k8s.registry.mirror.port }}/recluster

/cluster-autoscaler"
34 # image: "registry.recluster.local:5000/recluster/cluster-autoscaler"
35 command:
36 - './cluster-autoscaler'
37 - '--v=4'
38 - '--stderrthreshold=info'
39 - '--cloud-provider=recluster'
40 - '--cloud-config=/config/cloud-config'
41 - '--cluster-name=recluster'
42 - '--scale-down-unneeded-time=5m'
43 - '--skip-nodes-with-local-storage=false'
44 - '--skip-nodes-with-system-pods=false'
45 # ...
46 volumes:
47 - name: 'cloud-config'
48 secret:
49 secretName: 'cluster-autoscaler-secret'

Listing 3.17: Cluster Autoscaler deployment file

MetalLB configuration file (config.yaml221) is shown in Listing 3.18. Take note of the IP address
pool and the fact that it is used in Layer 2 Advertisement mode. Moreover, because both extremes
are inclusive, the example pool, which is set from 10.0.0.200 to 10.0.0.250, has 51 available ad-
dresses and not 50.

1 ---
2 apiVersion: 'metallb.io/v1beta1'
3 kind: 'IPAddressPool'
4 metadata:
5 name: 'default'
6 namespace: 'metallb-system'
7 spec:
8 addresses:
9 - "${{ k8s.loadbalancer.ip.from }}-${{ k8s.loadbalancer.ip.to }}"

10 # "10.0.0.200-10.0.0.250"
11

12 ---
13 apiVersion: 'metallb.io/v1beta1'
14 kind: 'L2Advertisement'
15 metadata:
16 name: 'default'
17 namespace: 'metallb-system'
18 spec:
19 ipAddressPools:
20 - 'default'

Listing 3.18: MetalLB configuration file

Docker Registry deployment file (deployment.yaml222) is shown in Listing 3.19. Take note of the
TLS parameters, persistent storage, deployment definition, and service configuration. The persistent

221https://github.com/carlocorradini/reCluster/blob/main/configs/k8s/loadbalancer/config.yaml
222https://github.com/carlocorradini/reCluster/blob/main/configs/k8s/registry/deployment.yaml

102

https://github.com/carlocorradini/reCluster/blob/main/configs/k8s/loadbalancer/config.yaml
https://github.com/carlocorradini/reCluster/blob/main/configs/k8s/registry/deployment.yaml

storage is of the type local-path or longhorn and has a capacity of 32 GiB. The Registry image
and its associated port are specified in the deployment. Lastly, the Service configuration of type
LoadBalancer with all associated parameters is specified to expose the Registry. In addition to the
latter, take notice of the loadBalancerIP parameter, which specifies a fixed IP address for the Registry
that is within the Load Balancer IP address pool.

1 # ...
2

3 ---
4 apiVersion: 'v1'
5 kind: 'Secret'
6 type: 'kubernetes.io/tls'
7 metadata:
8 name: 'registry-secret'
9 # ...

10 data:
11 tls.crt: "${{ k8s.registry.tls.crt }}"
12 # tls.crt: "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUZaekNDQTArZ0F3SUJBZ0lVVWg5T01vV0k1SEFG..."
13 tls.key: "${{ k8s.registry.tls.key }}"
14 # tls.key: "LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0tLS0tCk1JSUpRd0lCQURBTkJna3Foa2lHOXcwQkFRRUZBQVND..."
15

16 ---
17 apiVersion: 'v1'
18 kind: 'PersistentVolumeClaim'
19 metadata:
20 name: 'registry-data-pvc'
21 # ...
22 spec:
23 accessModes:
24 - 'ReadWriteOnce'
25 storageClassName: 'local-path'
26 # storageClassName: 'longhorn'
27 resources:
28 requests:
29 storage: '32Gi'
30

31 ---
32 apiVersion: 'apps/v1'
33 kind: 'Deployment'
34 metadata:
35 name: 'registry'
36 # ...
37 spec:
38 # ...
39 replicas: 1
40 template:
41 # ...
42 spec:
43 # ...
44 containers:
45 - name: 'registry'
46 image: 'registry:2'
47 ports:
48 - containerPort: 5000
49 # ...
50 volumes:
51 - name: 'registry-certs'
52 secret:
53 secretName: 'registry-secret'
54 - name: 'registry-data'
55 persistentVolumeClaim:
56 claimName:' registry-data-pvc'
57

58 ---
59 apiVersion: 'v1'
60 kind: 'Service'

103

61 metadata:
62 name: 'registry-service'
63 # ...
64 spec:
65 type: 'LoadBalancer'
66 selector:
67 app: 'registry'
68 ports:
69 - name: 'registry-port'
70 protocol: 'TCP'
71 port: ${{ k8s.registry.endpoint.port }}
72 # port: 5000
73 targetPort: 5000
74 loadBalancerIP: "${{ k8s.registry.endpoint.host }}"
75 # loadBalancerIP: "10.0.0.200"

Listing 3.19: Docker Registry deployment file

3.5.5.3 Node exporter

Node Exporter configuration file (config.yaml223) is shown in Listing 3.20. Take note that all collec-
tors are disabled, except for the CPU and memory collectors.
The Node Exporter application does not allow a configuration file by default, and it can only be cus-
tomized when it is executed via arguments. To simplify the process, the cluster implementation allows
configuring Node Exporter with a file, and then all the parameters are transformed into arguments
when it is installed via the installation script.

1 collector:
2 disable-defaults: true
3 cpu: true
4 meminfo: true

Listing 3.20: Node Exporter configuration file

3.5.5.4 reCluster

reCluster Controller configuration file (config.controller.yaml224) is shown in Listing 3.21.

1 kind: 'controller'
2

3 recluster:
4 server: "http://${{ recluster.server.host }}:${{ recluster.server.port }}"
5 # server: "10.0.0.10:8080"

Listing 3.21: reCluster Controller configuration file

reCluster Worker configuration file (config.worker.yaml225) is shown in Listing 3.22.
The only distinction between the Controller and Worker configuration files is the kind parameter,
which instructs the installation script which K3s and other potential component configuration file to
read.

1 kind: 'worker'
2

3 recluster:
4 server: "http://${{ recluster.server.host }}:${{ recluster.server.port }}"
5 # server: "10.0.0.10:8080"

Listing 3.22: reCluster Worker configuration file

Server environment configuration file (server.env226) is shown in Listing 3.23.

223https://github.com/carlocorradini/reCluster/blob/main/configs/node_exporter/config.yaml
224https://github.com/carlocorradini/reCluster/blob/main/configs/recluster/config.controller.yaml
225https://github.com/carlocorradini/reCluster/blob/main/configs/recluster/config.worker.yaml
226https://github.com/carlocorradini/reCluster/blob/main/configs/recluster/server.env

104

https://github.com/carlocorradini/reCluster/blob/main/configs/node_exporter/config.yaml
https://github.com/carlocorradini/reCluster/blob/main/configs/recluster/config.controller.yaml
https://github.com/carlocorradini/reCluster/blob/main/configs/recluster/config.worker.yaml
https://github.com/carlocorradini/reCluster/blob/main/configs/recluster/server.env

1 NODE_ENV='production'
2 HOST='0.0.0.0'
3 PORT=${{ recluster.server.port }}
4 # PORT=8080
5 LOGGER_LEVEL='info'
6 DATABASE_URL="postgresql://${{ recluster.database.user }}:${{ recluster.database.password }}

@${{ recluster.database.host }}:${{ recluster.database.port }}
/${{ recluster.database.db }}"

7 # DATABASE_URL="postgresql://recluster:password@10.0.0.10:5432/recluster"
8 SSH_USERNAME='root'
9 SSH_PRIVATE_KEY='/etc/recluster/certs/ssh.key'

10 SSH_PASSPHRASE=
11 TOKEN_PRIVATE_KEY='/etc/recluster/certs/token.key'
12 TOKEN_PUBLIC_KEY='/etc/recluster/certs/token.crt'
13 TOKEN_PASSPHRASE=

Listing 3.23: Server environment configuration file

3.5.5.5 SSH

SSH authorized keys configuration file (authorized_keys227) is shown in Listing 3.24.

1 ${{ ssh.authorized_key }}
2 # ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIK4mrabO3qgmkmWKSP+WcBDEWGGqJUBoiQdK3yAbKry9

Listing 3.24: SSH authorized keys file

SSH configuration file (ssh_config228) is shown in Listing 3.25. Take note of the Ed25519 digital
signature scheme, as well as the Ciphers and MACs.

1 Host *
2 AddKeysToAgent yes
3 IdentitiesOnly yes
4 PasswordAuthentication no
5 ChallengeResponseAuthentication no
6 PubkeyAuthentication yes
7 HostKeyAlgorithms ssh-ed25519-cert-v01@openssh.com,ssh-ed25519
8 Ciphers chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,

aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr
9 MACs hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,

umac-128-etm@openssh.com,hmac-sha2-512,hmac-sha2-256,umac-128@openssh.com
10 UseRoaming no
11 # ...

Listing 3.25: SSH configuration file

SSH server configuration file (sshd_config229) is shown in Listing 3.26.

1 Ciphers chacha20-poly1305@openssh.com,aes256-gcm@openssh.com,
aes128-gcm@openssh.com,aes256-ctr,aes192-ctr,aes128-ctr

2 MACs hmac-sha2-512-etm@openssh.com,hmac-sha2-256-etm@openssh.com,umac-128-etm@openssh.com,
hmac-sha2-512,hmac-sha2-256,umac-128@openssh.com

3 PubkeyAuthentication yes
4 PasswordAuthentication
5 ChallengeResponseAuthentication no
6 AllowTcpForwarding no
7 GatewayPorts no
8 X11Forwarding no
9 Subsystem sftp /usr/lib/ssh/sftp-server

10 # ...

Listing 3.26: SSH server configuration file

227https://github.com/carlocorradini/reCluster/blob/main/configs/ssh/authorized_keys
228https://github.com/carlocorradini/reCluster/blob/main/configs/ssh/ssh_config
229https://github.com/carlocorradini/reCluster/blob/main/configs/ssh/sshd_config

105

https://github.com/carlocorradini/reCluster/blob/main/configs/ssh/authorized_keys
https://github.com/carlocorradini/reCluster/blob/main/configs/ssh/ssh_config
https://github.com/carlocorradini/reCluster/blob/main/configs/ssh/sshd_config

4 Conclusions
Current cluster architectures are mainly concerned with maximizing service performance and achieving
near-instantaneous responsiveness while ignoring the energy impact and the various resources involved.
As a result, it is becoming more and more necessary — almost a requirement — to reconsider and
transform existing designs to create architectures that are more resource-aware and sustainable. These
latter requirements must be considered just as vital as performance and responsiveness.
The context and fundamental principles on which the new and more sustainable cluster architectures
should either completely or partially rely on have been initially explained in this document. More-
over, due to the outsourcing phenomenon that shifts local and physical architectures towards remote,
intangible, and virtual architectures, users tend to forget the numerous implications of this decision
that not only can have privacy and/or security concerns but also, and most importantly in this case,
completely removes the direct control and the resource awareness of the overall system.
Following the introduction, a possible theoretical design that is more sustainable has been put forward,
prioritizing the reduction of resource waste and energy consumption while maintaining a certain degree
of adaptability and configurability. Every component that constitutes the architecture has been thor-
oughly explained, highlighting its main purpose and different capabilities. A cluster is not a cluster
if the different components are not connected. In the design, there are three major network groups:
K8s, Internal and External; where the External Network may even be removed if external resources
and connections are not required. The reCluster project, which is a practical and sustainable cluster
implementation of the theorized architecture, has also been presented. All of its hardware components
have been recycled following decommissioning.
The implementation thoroughly explains how the reCluster was put into practice while adhering to
both the fundamental requirements and the theoretical architecture behind the networks and compo-
nents. It begins with the foundations, which are composed of GNU/Linux, a collection of programs,
and the Init System, all of which are packaged together as a custom distribution into a portable and
simple-to-install ISO image file. Then, each theorized component is mapped to a real-world applica-
tion, and some of its most important features used in reCluster are explained. The way the Server and
Cluster Autoscaler components are implemented is different because the first one was entirely built
from scratch, whereas the second one used an existing core that had been modified to be compatible
with the cluster architecture. The Server component represents the low-level knowledge of the cluster
and is deeply described, including the database structure, GraphQL queries and mutations API, how
the upscaling and downscaling procedures are handled, and how to exploit Kubernetes monitoring
without the need for a custom implementation. The Cluster Autoscaler, on the other hand, represents
the high-level knowledge of the cluster, and it is used in conjunction with the Server component to
perform the upscaling or downscaling operations. The Cluster Autoscaler only scales the number of
nodes and, because it is not the only method of autoscaling in a cluster, the other two approaches
are also explained: Vertical Pod Autoscaler, which automatically adjusts the resources of a Pod, and
Horizontal Pod Autoscaler, which automatically adjusts the number of Pods. The combination of
the Horizontal Pod Autoscaler and the Cluster Autoscaler is critical for improving total automation
and minimizing the need for human intervention, as well as lowering overall power consumption while
maintaining scalability.
Lastly, because manually installing the cluster and providing all of the necessary information is te-
dious, the installation script that automatically performs the installation operation while following a
specific set of configuration parameters has been discussed and proposed. Moreover, it is demonstrated
how the node’s benchmarks and power consumption data are measured. Finally, the most essential
elements of the configuration and deployment files of the various components and/or technologies used
are illustrated and discussed, so that the employed features of each can be recognized.
With all of the prior information and technology, building and deploying a more sustainable and

106

resource-aware cluster is feasible without incurring into breaking trade-offs; while it may be regarded
as a tiny step towards sustainable computing, it, along with other initiatives, attempts to bring the
result closer to realization.

4.1 Limitations And Future Work
This section depicts some of the difficulties encountered, existing criticalities and limitations, and rel-
evant future ideas that can enhance and extend the current architecture and implementation. Because
one of the project’s main points is FLOSS (Free/Libre and Open Source Software) compliance, anyone
from anywhere can contribute to it. The latter not only can increase the overall number of features
but also improve overall stability thanks to intrinsic testing in various use-case scenarios and heteroge-
neous environments, which allows for the discovery and correction of previously unknown bugs and/or
errors. External contributions from a wide variety of users are so valuable that they are frequently
undervalued and underestimated in current contexts.

The combination of the installation script and the external device for measuring power consump-
tion only conducts simple and basic readings on the instantaneously drawn energy. This is ideal for
desktop computers and servers that require an external energy source, but it is incompatible with
devices that use an internal energy source (batteries), such as laptop computers.
If the existing implementation of the installation script is executed on a laptop computer, the result-
ing power consumption readings are inaccurate since it does not take into consideration the current
absorbed energy from both the external (plug) and internal (battery) sources, but only the first. As a
result, the obtained final power consumption data are always lower than what are in reality, leading to
general inefficiency and erroneous selection by the algorithm in upscaling and downscaling operations,
because the Server recognizes the node as a much more power-efficient system than it is.
The script should determine whether the current node has internal energy sources and, when con-
ducting power consumption readings and calculations, adjust with a more sophisticated but efficient
and compatible algorithm that takes into account for both external and internal absorbed energy.
Moreover, further testing on devices with an internal energy source is required to better understand
how the system is powered, as it can solely use the external source, only use the internal source, or
even employ both.

Another of the project’s most significant difficulties has been developing the recluster Cloud
Provider for the Cluster Autoscaler. There are three primary reasons for this.
First off, the Cluster Autoscaler and the majority of the Kubernetes development environment are
built using the Go1 programming language. I had never written a line of Go code before developing the
recluster Cloud Provider, so I had to learn the language from the beginning as well as the package
ecosystem, code style, and syntax. Although difficult at first, the effort paid off in the end.
Second, neither official nor unofficial documentation exists that explains how to create a Cloud Provider
for the Cluster Autoscaler. My entire knowledge of developing the recluster Cloud Provider is based
on studying and evaluating the code developed by the other Cloud Providers. Additionally, because
each Cloud Provider has a unique implementation, distinct Server logic, and a different API, I had
to determine the similarities and fundamental elements that almost all of them share to transform it
and make it compatible with reCluster. The lack of documentation is understandable given that only
a small number of entities utilize and develop this technology, making it possible for them to access
experts and/or specialized consulting from the main CA developers themselves. Keep in mind that
the latter needs familiarity with the Go programming language, which was covered in the preceding
point.
Finally, it took longer than I anticipated to test the Cluster Autoscaler in conjunction with the Server
and the general architecture since almost every time a new, minor error or bug that I hadn’t con-
sidered appeared. However, the latter was not only beneficial for reCluster; it additionally helped in
identifying an issue2 in the Cluster Autoscaler’s main code, which was submitted to the maintainers

1https://go.dev
2https://github.com/kubernetes/autoscaler/issues/5378

107

https://go.dev
https://github.com/kubernetes/autoscaler/issues/5378

and promptly fixed within a week.

Currently, the only way for a user or administrator to interact with the cluster is to use appli-
cations such as curl, wget, or similarities to directly use the various set of GraphQL queries and
mutation API, or use the GraphQL Studio Explorer, which is not available in production and is only
a nicer interface for low-level interactions with the GraphQL API. As a result, there is a need to
create a UI dashboard, such as the one from Kubernetes3, where all of the information provided by
the Server is visually available without involving the user in low-level GraphQL API interactions. The
majority of operations should be simple and intuitive, without needing the user to better understand
the requirements and outcomes.
Because the web application must consider the authentication mechanism, only authorized and/or
authenticated users may access specific information or do certain operations. Furthermore, to provide
a better overview of all the information accessible to the user, the dashboard should be capable of
generating faster-to-understand graphs and/or charts. Consider a pie chart in which the number of
active/working nodes (green color) is visually compared against the number of inactive nodes (gray
color). The user can immediately understand the current cluster capacity/demand, where if the chart
is almost entirely green, there is an overall high workload in the cluster, whereas if the chart is almost
entirely gray, there is an overall low workload in the cluster, and thus the number of inactive nodes
predominates.
With so many tools, technologies, and frameworks available for developing a web application nowadays,
the most difficult and critical phase is choosing which one to use before even beginning development.
Also, there may be a desire to improve the simplicity with which each node is managed without di-
rectly requiring SSH or similar technologies.
The latter can be accomplished by directly integrating a protected graphical dashboard on each node
that displays the various information of the associated node as well as the ability to install, upgrade,
or delete packages and perform additional operations.
YunoHost4, which leverages a simple and easy-to-use, but incredibly powerful, web UI dashboard to
completely administer the node, is a starting point for what may be accomplished or developed.

Computers are the only systems that are currently used and supported in the cluster. But, there
are an enormous number of unused smartphone and tablet devices that might be employed in the
cluster. Most of these devices are ideal for becoming worker nodes in a cluster because the previous
owners replaced them due to an upgrade to a newer model or because there is hardware damage, such
as on the screen or camera, but this has not affected important components such as the main board.
Furthermore, these devices have become so powerful in recent years that they may be compared to
the same performance as medium/low-end PCs while having a significantly lower power consumption
thanks to different internal architecture and a prior design on energy consumption optimizations.
Developing for mobile devices might be challenging since there may be incompatibilities between the
software used for the cluster related to the internal Operating System and missing libraries or Kernel
requirements. A viable alternative is to uninstall the existing operating system (Android or iOS)
and replace it with a pure GNU/Linux distribution designed exclusively for mobile devices, such as
postmarketOS5. It should be noted that the overall compatibility of the Operating System with the
device varies from device to device, and the OS may need to be patched. Mobile development should
not be hard, however, this is the current status and/or only method for quickly porting applications
designed for GNU/Linux on PCs to mobile devices.
As previously stated, the power consumption of mobile devices is extremely small compared to what
they can provide. When compared to desktop computers and even laptop computers, the performance-
to-power-consumption ratio is enormous. There are no simple techniques for remotely powering on a
mobile device that does not involve custom solutions. However, it should be mentioned that the sleep
mode of mobile devices is so efficient that a device in sleep mode consumes almost zero energy and may

3https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard
4https://yunohost.org
5https://postmarketos.org

108

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard
https://yunohost.org
https://postmarketos.org

last for more than a week on a single charge. As a result, if the remote wake-up solution is too expen-
sive or unfeasible, the concept of keeping a mobile device constantly in sleep mode might be considered.

The cluster currently supports only amd64 and arm64 architectures. Because the majority of the
employed software and technologies support a wide range of different architectures by default, such
as mips6 or mipsel, the remaining incompatible components, such as the Cluster Autoscaler, can be
ported and/or transformed to be compatible with additional and different architectures.
Expanding the number of supported architectures allows more devices to be incorporated into the
cluster, giving them new life while also improving the cluster’s overall workload capacity.

The existing Node selection algorithm is effective, but it is a simplistic implementation because it
just depends on maximum and minimum power consumptions and, if both are identical, falls back to
performance data.
The existing algorithm works, despite its simplicity and limited accessible data to perform all conceiv-
able computations and evaluations. Nevertheless, there are several aspects where it may be refined to
accomplish a more suitable node’s final decision. As an example, while upscaling, the chosen node may
have a lower power consumption and possibly greater performance, whereas when downscaling, it may
have higher power consumption and potentially worse performance. Furthermore, in future versions,
the more efficient and sophisticated algorithm should take into consideration other factors with a more
advanced internal logic. There may be nodes that are more efficient while under medium workload
conditions, while others that are less efficient when under the same conditions but with lower mini-
mum and maximum power consumption coefficients. The existing approach is deterministic, always
preferring the second node type when upscaling and the first node type when downscaling. The new
algorithm should perform extra computations and evaluations on which node type should bootstrap
or terminate, and it’s expected to follow the current overall cluster state as well as its overall power
consumption.
The algorithm may also be enhanced with a Kalman Filter7 for estimating the combination of power
consumption and workload to significantly reduce total (real) power consumption while also improving
overall Quality of Service (QoS).
The latter are merely possible ideas for what the new enhanced algorithm should include and what
possible advancements, such as lowering power consumption while increasing overall performance,
must be addressed.

There are no graphs or charts in this document to demonstrate how the generally existing cluster
implementation performs on different workloads and/or hardware. This is because the time and re-
sources required to conduct such measurements accurately and precisely are presently insufficient for
a single person.
The cluster’s performance management can be proposed as an extra document/paper that not only il-
lustrates the various data collected, but also enhances and extends the existing design and algorithms
with improvements determined from the performance management results. This task is currently
assigned to another CRIT team member who employs this document as a foundation to better com-
prehend how the general architecture is designed and how to obtain correct and precise performance
measurements.
Even though this document lacks data on performance measurements, the current cluster implemen-
tation by default exposes data that can be used for analysis of general performance and resource
utilization. Every node in the cluster provides real-time hardware and OS-related data thanks to the
Node Exporter component, which is described in section 3.2.4. These metrics are then collected and
analyzed by the Prometheus component, as described in section 3.2.7.1, which allows for monitoring
and querying/interpolating them with various results that can cover a specified period.
Furthermore, because the overall architecture is already established and deployed automatically, con-
trol of overall performance may be employed not only occasionally or during testing but always. This

6https://wikipedia.org/wiki/MIPS_architecture
7https://wikipedia.org/wiki/Kalman_filter

109

https://wikipedia.org/wiki/MIPS_architecture
https://wikipedia.org/wiki/Kalman_filter

not only gives reacher statistics, but it additionally has the potential to provide real-time alerts on the
overall health of the cluster. Besides that, custom notifications that monitor the total cluster power
consumption can be established. This can be critical in a variety of use-case situations. Consider
the following scenario: the cluster is powered solely by batteries that are charged during the day by
solar panels, similar to the Low-Tech magazine8, and there is a known overall threshold amount of
energy consumption that, if exceeded, can cause the entire cluster to go offline until the next recharge.
Employing an accurate performance management system to compute the threshold, as well as a moni-
toring and alerting system to notify an administrator, is critical; enabling the cluster to be online and
active as much as possible while also performing its main routine of service orchestration.
Nevertheless, this point is critical, and it must be addressed and implemented in future versions of
reCluster.

In addition to the preceding point, there is a missing section where the various use-case scenarios
are analyzed and tested owing to the same reasons of a single person’s lack of time and resources.
Currently, only two use-case scenarios have been successfully evaluated in a real-world context using
the reCluster cluster architecture. The first scenario is a one-to-one mapping to a potential cluster
used for hosting various services that need to be exposed to an external network or, more broadly,
the Internet. It has a stable connection, and most of the components and their configurations may be
downloaded, guaranteeing the most recent and up-to-date versions are used in the cluster. Having the
most recent versions available might be beneficial since there may be bugs or security vulnerabilities
that have been addressed, whereas the bundled ones may contain issues due to being outdated. The
first scenario is the most common, in which practically anybody can deploy a cluster without diffi-
culty. The second scenario, on the other hand, is an Air-Gap environment in which there is no Internet
connection and all components and processes must be available and performed offline. The latter has
been well detailed throughout the document, and it may also be regarded as a solid foundation/re-
quirement for future environmental and availability crises in which having an internet connection is
no longer obvious. Using Air-Gap measurements only during the installation procedure, while the
normal execution is in normal conditions with an Internet connection, can be advantageous because
it does not require any download, reducing overall installation time and also avoiding the involvement
of networking equipment, which can consume unnecessary energy, and the installed software behavior
is always predictable.
In addition to the preceding two scenarios, the cluster might be deployed in two additional scenarios.
The first instance is when the cluster may be used in education to evaluate students’ work. The latter
can be employed to test their Kubernetes abilities, as well as teach them basic and advanced web apps
or APIs that include various software components, such as a server, a database, and a cache server.
The second scenario is for redundancy, in which reCluster is being used only if the main cluster, which
is more performant but consumes more energy, is no longer accessible due to a failure. reCluster uses
decommissioned main cluster hardware and has just one Controller node active, whereas all worker
nodes are inactive. If there is workload that has to be scheduled while the main cluster is unavailable,
the worker nodes start to boot up. It is worth noting that, even if there are hundreds of worker nodes,
the overall power consumption when the main cluster is healthy is that of the single Controller node,
which is negligible.

Source: https://foundation.r
ust-lang.org/policies/logo-p
olicy-and-media-guide

Figure 4.1: Rust logo

In future releases, the Server implementation must be improved.
Replace any interpreted languages, such as JavaScript or Python, in the
Server with a compiled/low-level programming language, such as C, C++, or
Rust. Using these programming languages has two major advantages over
the existing implementation. First, because the program must be compiled
to produce the final executable, there is no need to distribute an archive
or a folder containing many files and then download and install all of the
required dependencies. The required dependencies must be available only
on the machine performing the compilation procedure, and if the program

8https://solar.lowtechmagazine.com

110

https://foundation.rust-lang.org/policies/logo-policy-and-media-guide
https://foundation.rust-lang.org/policies/logo-policy-and-media-guide
https://foundation.rust-lang.org/policies/logo-policy-and-media-guide
https://solar.lowtechmagazine.com

is compiled statically, all used libraries, such as the OpenSSL library, are directly bundled inside the
final executable, at the expense of being larger than a dynamically linked program. Furthermore,
and this is critical, [22] reports that applications that are implemented with a system programming
language and are compiled directly to machine code are significantly more efficient and demand fewer
resources and energy to accomplish the same result as an interpreted language. I would prefer Rust9

over the other two system languages because it guarantees memory safety and thread safety, increasing
overall reliability and productivity, even though it has a steep learning curve at first, thanks to the
various official tools, such as a package manager and auto formatter. Although the development and
effort required by a compiled language is greater than that required by an interpreted language, the
overall benefits in this circumstance are too significant to be ignored.
Another area that needs to be enhanced is general error management and node administration, since
there is currently just a simple management of the two that heavily relies on Kubernetes. Updated
versions should improve error alerts to administrators as well as possible recovery mechanisms. The
latter can also be extended to use various approaches based on the overall circumstances and deploy-
ment environment.
Undoubtedly, many aspects of the Server could be improved but are not covered in this section. How-
ever, because the project is completely FLOSS compliant, users can contribute and improve the code
with ideas that I hadn’t even considered before.

4.2 Closing Remarks
Adapting existing tools that are specifically developed for big and energy-hungry environments to a
more sustainable and resource-aware design while maintaining nearly the same capabilities for the
computing industry is not only feasible, but also necessary for a more sustainable future.

9https://www.rust-lang.org

111

https://www.rust-lang.org

Bibliography

Icons in all Figures, unless otherwise specified, are from www.flaticon.com. They were created by one
or more of the following authors: Fathema Khanom, Freepik, Iconpro86, juicy fish, kerismaker,
Kiranshastry, Pixel perfect, Roundicons, Smashicons, Uniconlab, Vectors Market, and Vitaly

Gorbachev.

[1] Advanced Micro Devices, Inc. Magic Packet Technology. Technical Report 20123, Advanced
Micro Devices, Inc, November 1995.

[2] Aleksić S. Analysis of Power Consumption in Future High-Capacity Network Nodes. J. Opt.
Commun. Netw., 1:245–258, August 2009.

[3] Amazon Web Services, Inc. What is DevOps? https://aws.amazon.com/devops/what-is-dev

ops. Accessed on 20/01/2023.

[4] Angeli L., Okur Ö., Corradini C., Stolin M, Huang Y., Brazier F. and Marchese M. Concep-
tualising Resources-aware Higher Education DigitalInfrastructure through Self-hosting: a Multi-
disciplinary View. In Eighth Workshop on Computing within Limits 2022, June 2022.

[5] Arm Limited. Arm Big.LITTLE. https://www.arm.com/technologies/big-little. Accessed
on 24/01/2023.

[6] Bradley J., Jones M. and Sakimura N. JSON Web Token (JWT). RFC 7519, May 2015.

[7] Castro J. D. Introducing Linux Distros. Apress, 1 edition, 2016.

[8] Cox R. Surviving Software Dependencies. Commun. ACM, 62(9):36–43, August 2019.

[9] Decker D. K. The monster footprint of digital technology. https://www.lowtechmagazine.co

m/2009/06/embodied-energy-of-digital-technology.html.

[10] DigitalOcean, LLC. Autoscale Cluster With Horizontal Pod Autoscaling. https://docs.digit
alocean.com/tutorials/cluster-autoscaling-ca-hpa. Accessed 04/02/2023.

[11] Eastlake D. E. 3rd and Panitz A. R. Reserved Top Level DNS Names. RFC 2606, June 1999.

[12] Enes J., Fieni G., Expósito R. R., Rouvoy R. and Touriño J. Power Budgeting of Big Data
Applications in Container-based Clusters. In 2020 IEEE International Conference on Cluster
Computing (CLUSTER), pages 281–287, 2020.

[13] Groth D., Lammle T. and Tedder W. Network +. Sybex, Inc., 1 edition, 2003.

[14] IBM Corporation. High availability versus fault tolerance. https://www.ibm.com/docs/en/po

werha-aix/latest?topic=aix-high-availability-versus-fault-tolerance. Accessed on
06/01/2023.

[15] Intel Corporation. What Is Performance Hybrid Architecture? https://www.intel.com/conten

t/www/us/en/gaming/resources/how-hybrid-design-works.html. Accessed on 24/01/2023.

[16] Javvin Technologies, Inc. Network Protocols Handbook. Javvin Technologies, Inc., 2 edition, 2004.

112

www.flaticon.com
https://aws.amazon.com/devops/what-is-devops
https://aws.amazon.com/devops/what-is-devops
https://www.arm.com/technologies/big-little
https://www.lowtechmagazine.com/2009/06/embodied-energy-of-digital-technology.html
https://www.lowtechmagazine.com/2009/06/embodied-energy-of-digital-technology.html
https://docs.digitalocean.com/tutorials/cluster-autoscaling-ca-hpa
https://docs.digitalocean.com/tutorials/cluster-autoscaling-ca-hpa
https://www.ibm.com/docs/en/powerha-aix/latest?topic=aix-high-availability-versus-fault-tolerance
https://www.ibm.com/docs/en/powerha-aix/latest?topic=aix-high-availability-versus-fault-tolerance
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html
https://www.intel.com/content/www/us/en/gaming/resources/how-hybrid-design-works.html

[17] Muhammad B. A., Shahin M. and Zhu L. Continuous Integration, Delivery and Deployment: A
Systematic Review on Approaches, Tools, Challenges and Practices. IEEE Access, 5:3909–3943,
2017.

[18] Nardi B., Tomlinson B., Patterson D. J., Chen J., Pargman D., Raghavan B. and Penzenstadler
B. Computing within Limits. Commun. ACM, 61(10):86–93, September 2018.

[19] Ong D., Moors T. and Sivaraman V. Comparison of the energy, carbon and time costs of video-
conferencing and in-person meetings. Computer Communications, 50:86–94, 2014.

[20] Pasek A., Vaughan H. and Starosielski N. The world wide web of carbon: Toward a relational
footprinting of information and communications technology’s climate impacts. Big Data & Soci-
ety, 10:205395172311589, February 2023.

[21] Paya A. and Marinescu D. C. Energy-Aware Load Balancing and Application Scaling for the
Cloud Ecosystem. IEEE Transactions on Cloud Computing, 5(1):15–27, 2017.

[22] Pereira R., Couto M., Ribeiro F., Rua R., Cunha J., Paulo J. F. and Saraiva J. Ranking pro-
gramming languages by energy efficiency. Science of Computer Programming, 205:102609, 2021.

[23] Permacomputing contributors. Permacomputing. https://permacomputing.net. Accessed
26/02/2023.

[24] Radovanović A., Koningstein R., Schneider I., Chen B., Duarte A., Roy B., Xiao F., Haridasan M.,
Hung P., Care N., Talukdar S., Mullen E., Smith K., Cottman M. and Cirne W. Carbon-Aware
Computing for Datacenters. IEEE Transactions on Power Systems, 38(2):1270–1280, 2023.

[25] Schwarz N., Lungu M. F. and Nierstrasz O. SEUSS: Decoupling responsibilities from static
methods for fine-grained configurability. The Journal of Object Technology, 11:3:1, April 2012.

[26] Selwyn N. Ed-Tech Within Limits: Anticipating educational technology in times of environmental
crisis. E-Learning and Digital Media, 18(5):496–510, 2021.

[27] SentinelOne. What is an ”Air Gap” in Network Security? https://www.sentinelone.com/bl

og/air-gapped-networks-a-false-sense-of-security. Accessed on 15/01/2023.

[28] Silberman S. M. and Tomlinson B. Precarious infrastructure and postapocalyptic computing. In
Examining Appropriation, Re-use, and Maintenance for Sustainability, workshop at CHI 2010,
2010.

[29] Sriramya P. and Karthika R. A. Providing password security by salted password hashing using
Bcrypt algorithm. ARPN Journal of Engineering and Applied Sciences, 10:5551–5556, January
2015.

[30] Vanderbauwhede W. Frugal Computing. https://limited.systems/articles/frugal-compu
ting. Accessed on 15/02/2023.

113

https://permacomputing.net
https://www.sentinelone.com/blog/air-gapped-networks-a-false-sense-of-security
https://www.sentinelone.com/blog/air-gapped-networks-a-false-sense-of-security
https://limited.systems/articles/frugal-computing
https://limited.systems/articles/frugal-computing

Appendix A Corollary Projects

During the development, I noticed that several portions of the code might be turned into independent
libraries and utility scripts that may be valuable to other programmers as well as my single use-case
scenario. Even though it is now external to reCluster, this software is still an essential part of it,
which is now open to the entire community.
Shortly after the publication, I began receiving some feedback, contributions, and, most importantly,
appreciation in the form of GitHub stars1.
The three projects derived from the development of reCluster are briefly illustrated and explained in
the sections that follow. As stated in the Philosophy section, everything is completely Open Source
and available under the MIT license.

A.1 Node Exporter Installer

Available at https://github.com/carlocorradini/node_exporter_installer
Used while installing reCluster on a Node (see section 3.5).
Node exporter (see section 3.2.4) does not provide any installation script and the default procedure
(see https://github.com/prometheus/node_exporter#installation-and-usage) is far from
user-friendly and easily configurable.
Inspired by K3s (see section 3.2.3) install.sh2 script, Node exporter installer helps the user by
automatically installing Node exporter on the machine. Condensed in a single install.sh POSIX
script, it is easily configurable (see section A.1.1) and can be downloaded and executed directly by sh

(see example A.1.2.1).

A.1.1 Configuration

Node exporter installer accepts environment variables only as configuration parameters. This is done
to avoid any potential conflict with the default behavior of Node exporter, which employs argument
flags. See https://github.com/prometheus/node_exporter#collectors for a comprehensive list
of Node exporter configuration parameters.
The configuration settings allowed by Node exporter installer are shown in the table below.

Name Description Default Value

INSTALL NODE EXPORTER SKIP DOWNLOAD Skip downloading Node
exporter.
A local executable bi-
nary must already exist at
<BIN DIR>/node exporter

Useful in an Air-Gapped
environment.

false

INSTALL NODE EXPORTER FORCE RESTART Force restarting Node ex-
porter service.

false

1https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
2https://github.com/k3s-io/k3s/blob/master/install.sh

114

https://github.com/carlocorradini/node_exporter_installer
https://github.com/prometheus/node_exporter#installation-and-usage
https://github.com/prometheus/node_exporter#collectors
https://docs.github.com/en/get-started/exploring-projects-on-github/saving-repositories-with-stars
https://github.com/k3s-io/k3s/blob/master/install.sh

INSTALL NODE EXPORTER SKIP ENABLE Do not enable Node ex-
porter service at startup.

false

INSTALL NODE EXPORTER SKIP START Do not start Node ex-
porter service.

false

INSTALL NODE EXPORTER SKIP FIREWALL Do not apply any firewall
rules.
Supported firewalls are:
iptables3, firewalld4

and UFW5.

false

INSTALL NODE EXPORTER SKIP SELINUX Do not change SELinux6

context for Node exporter
binary.

false

INSTALL NODE EXPORTER VERSION Node exporter version to
download.

latest

INSTALL NODE EXPORTER BIN DIR Directory where to install
Node exporter binary and
uninstall script.

/usr/local/bin

or

/opt/bin

INSTALL NODE EXPORTER SYSTEMD DIR Directory where to install
Systemd service files.

/etc/systemd/system

INSTALL NODE EXPORTER EXEC Node exporter configura-
tion flags.

Table A.1: Node exporter installer configuration parameters

A.1.2 Example

This section shows some examples of how to use Node exporter installer. In both, we use curl7 to
download the script from https://raw.githubusercontent.com/carlocorradini/node_exporter

_installer/main/install.sh and pipe the output to sh for execution.

A.1.2.1 Basic

Install Node exporter using the default configuration parameters for both installer and binary.

1 curl \

2 --silent \ # Do not show progress meter or error messages

3 --show-error \ # Show an error message if it fails

4 --fail \ # Fail fast with no output at all on server errors

5 --location \ # If the requested resource has moved, redo the request to the new location

6 "https://raw.githubusercontent.com/carlocorradini/node_exporter_installer/main/install.sh" \

7 | sh -

Listing A.1: Basic installation with default configuration parameters

A.1.2.2 Advanced

Install Node exporter v1.5.0 without starting the service automatically. Disable all default collectors,
leaving only CPU and memory statistics enabled.

1 curl \

2 ... \

3https://www.netfilter.org/projects/iptables
4https://firewalld.org
5https://wiki.ubuntu.com/UncomplicatedFirewall
6https://selinuxproject.org
7https://curl.se

115

https://raw.githubusercontent.com/carlocorradini/node_exporter_installer/main/install.sh
https://raw.githubusercontent.com/carlocorradini/node_exporter_installer/main/install.sh
https://www.netfilter.org/projects/iptables
https://firewalld.org
https://wiki.ubuntu.com/UncomplicatedFirewall
https://selinuxproject.org
https://curl.se

3 | INSTALL_NODE_EXPORTER_VERSION="v1.5.0" \ # Download and install Node exporter v1.5.0

4 INSTALL_NODE_EXPORTER_SKIP_START="true" \ # Do not start Node exporter service

5 sh - \

6 --collector.disable-defaults \ # Disable default collectors

7 --collector.cpu \ # Expose CPU statistics

8 --collector.meminfo # Expose memory statistics

Listing A.2: Advanced installation with custom configuration parameters

A.2 Inline

Available at https://github.com/carlocorradini/inline
Used while generating the final release bundle for distribution (see section B.3).
It is useful to be able to split a large script into many files to make it easier to work with while still
being able to distribute it as a single script. This program reads an input file and produces an output
file with all of the sources inlined.
The source command8, . <FILE> for POSIX shells or source <FILE> for non-POSIX shells (e.g.
Bash9), read, and executes commands from the file specified in the current shell environment. It is
useful to load functions, variables, and configuration files into the current shell context.
Inline is a static tool that does not execute the input script. As a result, it cannot determine
the value of a variable dynamically if it is used inside the source command path (i.e. source

"$DIR/path/to/script/sh"). To avoid this, inline requires a hint on where to find the specified
file.

A.2.1 Features

Many helpful features of Inline are described below.

• POSIX standard-compliant.

• Sourcing with quotes, spaces, and more.

• Sourcing from global variable $PATH.

• Sourcing from ShellCheck (a shell script static analysis tool10) source directive11.
This is considered a hint to Inline and is used only if the source path is invalid.

shellcheck source=path/to/script.sh

. "$DIR/path/to/script.sh"

shellcheck source=path/to/script.sh

source "$DIR/path/to/script.sh"

• Recursive sources. If a sourced file contains additional source commands, they are also inlined
and included in the final output script.
It should be noted that these can cause infinite recursion.

• Recursion detection. To avoid infinite recursion, an exception is thrown if a file is sourced
multiple times. This is accomplished through the use of an internal cache that saves the absolute
path to each sourced file. If the path to a script file in a source command is already in the cache,
a recursion is detected.

8https://linuxize.com/post/bash-source-command
9https://www.gnu.org/software/bash

10https://www.shellcheck.net
11https://www.shellcheck.net/wiki/Directive

116

https://github.com/carlocorradini/inline
https://linuxize.com/post/bash-source-command
https://www.gnu.org/software/bash
https://www.shellcheck.net
https://www.shellcheck.net/wiki/Directive

• Shebang removal in sourced files.
A shebang12 is the character sequence consisting of the hashtag symbol and exclamation mark
(#!) at the beginning of a script.
The shell interpreter only allows one shebang per script. As a result, the shebang is only allowed
in the input script file, while it is automatically removed in all sourced script files.

• Avoid inlining a certain source file. If the inline skip comment directive (# inline skip) is
present before a source command, the latter is ignored and not inlined. As a consequence, the
final output script includes the original command, unaltered and unaligned.
It is worth noting that the skip directive also works with ShellCheck. The sole requirement is
that there are no blank lines between the directives and the source command.

inline skip

shellcheck source=path/to/script.sh

. "$DIR/path/to/script.sh"

shellcheck source=path/to/script.sh

inline skip

source "$DIR/path/to/script.sh"

A.2.2 Configuration

Inline’s behavior is easily customizable by using argument flags.
The accepted configuration parameters are listed in the table below.

Name Description Default Value

in-file Input script file (<FILE>).
If the file does not exist, an error is thrown.

out-file Output script file (<FILE>).
If a file with the same name and path already ex-
ists, an error is thrown. Unless the --overwrite
argument is given, the latter is always true (see
option below).
If no value is specified, the name of the output
file is determined by examining the original in-
put file. The first portion is the original name,
followed by a .inlined string, and finally, if
present, the extension (usually .sh).

<NAME>.inlined[EXTENSION]

overwrite Replace the input file.
The inlined result replaces the original file con-
tent. This is the same as setting the output file’s
value as the original input file, except that the
existence check is bypassed (see option above).

false

12https://wikipedia.org/wiki/Shebang_(Unix)

117

https://wikipedia.org/wiki/Shebang_(Unix)

log-level Logging level (<LEVEL>).
Attachment C provides additional information
regarding logging and logging levels.
The following logging levels are supported (listed
in descending order of importance):

5 silent

4 fatal

3 warn

2 info

1 debug

info

disable-color Disable terminal colors (enabled by default). false

help Display a help message and terminate (success-
fully).

Table A.2: Inline configuration parameters

A.2.3 Example

This section provides an example of how Inline works and how it may be used.
There are two script files, both of which begin with a shebang. There is a print command in the first
file, hello.sh, that outputs Hello and an empty space, followed by a source command that includes
the script file world.sh. The format of the second file, world.sh, is the same as the first, except
that the print command outputs World! and the newline character (\n), and there are no source
commands.
The following two listings show the contents of the two files:

1 #!/usr/bin/env sh

2

3 printf "Hello "

4

5 . "world.sh"

Listing A.3: Input script hello.sh

1 #!/usr/bin/env sh

2

3 printf "World!\n"

Listing A.4: Sourced script world.sh

The goal is to inline the script file hello.sh and produce an output file that has no source
commands. When the command ./inline.sh --in-file "hello.sh" is executed, the following result is
obtained:

1 #!/usr/bin/env sh

2

3 printf "Hello "

4

5 # . "world.sh"

6

7 printf "World!\n"

Listing A.5: Inlined script hello.inlined.sh

Note the unique shebang as well as the source command that has been commented out with
the symbol #. Furthermore, because no --out-file option is used, the final output file is named
hello.inlined.sh, which does not override the original input file.

A.3 GraphQL Auth Directive

Available at https://github.com/carlocorradini/graphql-auth-directive
Used in the GraphQL API (see section 3.3.2).

118

https://github.com/carlocorradini/graphql-auth-directive

A custom GraphQL directive13 that protects resources from unauthenticated and unauthorized access
in high-security contexts. It is available in all major Node.js registries as graphql-auth-directive.
A directive is an identifier preceded by a @ character, optionally followed by a list of named arguments,
which can appear after almost any form of syntax in the GraphQL query or schema languages.
The GraphQL context14 holds all important information about the current request. A GraphQL context
is an object that is shared by all resolvers in a given execution. It helps store data such as authentica-
tion information, the current user, database connections, data sources, and other information required
to operate the business logic. It is important to note that the context does not have to follow a
predefined structure; rather, it is highly flexible to the user’s implementation.

A.3.1 Configuration

Before applying the directive to the GraphQL schema, it must be built/configured. The library exposes
a utility function called buildAuthDirective that accepts a configuration object with the values
provided in the table below and returns the type definition (see section A.3.2) as well as a transformer
function that applies the auth logic to the executable GraphQL schema.

Name Description Default Value

name Directive name.
If a name different from the default
is specified, it must be reflected in
the schema where the directive is
used, otherwise, an error is thrown.

auth

auth A function or class that handles au-
thentication and authorization.
The current context (which con-
tains information about the current
request) and the roles and permis-
sions required by the requested re-
source must be accepted as argu-
ments by the implementation. If
access to the requested resource is
granted, the boolean value true is
returned; otherwise, false is re-
turned if access is denied.
A default basic auth function is al-
ready implemented and checks for
the existence of an authorized ap-
plicant and that its roles and per-
missions overlap with those of the
requested resource.

13https://spec.graphql.org/October2021/#sec-Language.Directives
14https://the-guild.dev/graphql/modules/docs/essentials/context

119

https://spec.graphql.org/October2021/#sec-Language.Directives
https://the-guild.dev/graphql/modules/docs/essentials/context

authMode Auth mode if access is not granted.
Methodology for informing the re-
questor that access to the resource
has been denied. It is often de-
sirable to hide the important in-
formation that the request is fail-
ing due to an auth check and in-
stead deliver an error/informational
response stating that the requested
resource simply does not exist.
The first mode, ERROR, throws an
authentication or authorization er-
ror (see below), whereas the second
mode, NULL, returns the value null
(empty).

ERROR

roles Roles configuration.
An object with two properties:

• enumName

Defines the array type, which
is by default a String.
It is standard practice in
GraphQL and in programming
languages to map a set of val-
ues to an enum. An enumer-
ation type15 is a special kind
of scalar that is restricted to
a particular set of allowed val-
ues.
This option restricts the al-
lowed values of roles to a spe-
cific set rather than a general
string.

• default

Roles that are required by de-
fault.
No roles are required by de-
fault. As a result, access to
a protected resource can only
be provided with authentica-
tion. Overriding this option
enables authorization by de-
fault, requiring the requestor
to have at least one matching
role.

enumName: String

default: []

permissions Permissions configuration.
An object with the same properties
as roles configuration (see above).

enumName: String

default: []

120

authenticationError Authentication error class. The er-
ror is thrown if there is no authenti-
cated requestor in the current con-
text. By default, a generic error is
thrown. The class must extend the
Error class.

AuthenticationError

authorizationError Authorization error class. The error
is thrown if the roles and/or permis-
sions of the requestor do not over-
lap with those of the requested re-
source. By default, a generic error
is thrown. The class must extend
the Error class.

AuthorizationError

container Dependency Injection Container.
Dependency injection is a design
pattern that shifts the responsibil-
ity of resolving dependencies to a
dedicated dependency injector that
knows which dependent objects to
inject into application code[25].
It should be noted that dependency
injection is only available if auth is
a class type.

IOCContainer

Table A.3: GraphQL auth directive configuration parameters

A.3.2 Type Definition

GraphQL has its language for writing GraphQL Schemas: the GraphQL Schema Definition Language16

(SDL). SDL is incredibly powerful and expressive while being simple and intuitive to use. The syntax
is well-defined and is included in the official GraphQL specification17.
The Type Definition of the GraphQL auth directive generated with default settings is shown below:

1 """

2 Protect the resource from unauthenticated and unauthorized access.

3 """

4 directive @auth(

5 """

6 Allowed roles to access the resource.

7 """

8 roles: [String!]! = []

9 """

10 Allowed permissions to access the resource.

11 """

12 permissions: [String!]! = []

13) on FIELD | FIELD_DEFINITION | OBJECT

Listing A.6: GraphQL auth directive Type Definition

The above definition must be available in every GraphQL schema that utilizes the directive, other-
wise, an error is thrown during the server bootstrap operation.
As stated in section A.3.1, the definition is generated dynamically by a set of configuration options
or their default value. The name (@auth), roles and permissions type (non-nullable String array),
and default value (an empty array []) are easily distinguishable.

15https://spec.graphql.org/October2021/#sec-Enum-Value
16https://www.prisma.io/blog/graphql-sdl-schema-definition-language-6755bcb9ce51
17https://spec.graphql.org

121

https://spec.graphql.org/October2021/#sec-Enum-Value
https://www.prisma.io/blog/graphql-sdl-schema-definition-language-6755bcb9ce51
https://spec.graphql.org

A.3.3 Example

Consider a GraphQL backend application that requires authentication and authorization. The sections
of the GraphQL schema where the auth directive is used, as well as the enums that compose the different
roles and permissions mappings are listed below:

1 enum Role {

2 ADMIN

3 SIMPLE

4 }

5

6 enum Permission {

7 VIEW

8 EDIT

9 }

10

11 directive @auth(

12 roles: [Role!]! = []

13 permissions: [Permission!]! = []

14) on FIELD | FIELD_DEFINITION | OBJECT

15

16 type Query {

17 unprotected: String!

18 protected(arg: Boolean): Int! @auth

19 secret: Float! @auth(roles: [ADMIN], permissions: [VIEW])

20 }

Listing A.7: GraphQL schema with auth directive and mappings

The available roles are represented by the enum Role: ADMIN for administrators and BASIC for
simple users. The supported permissions are represented by the enum Permission: VIEW to allow
resource visualization and EDIT to allow resource modification.
The definition of @auth directive accepts as roles an array of Role whose default value is empty and
as permissions an array of Permission whose default value is empty. Notice the difference from the
default type definition shown in section A.3.2.
Three queries are supported:

1. unprotected: String!

unprotected does not accept any arguments and returns a non-nullable string. Does not require
any authentication or authorization. As a result, it may be called by anyone.

2. protected(arg: Boolean): Int! @auth

unprotected accepts a boolean optional parameter named arg and returns a non-nullable in-
teger number. Because no roles or permissions are specified in the directive, it requires only
authentication but no authorization. As a consequence, everyone who has been authenticated is
allowed to call this query.

3. secret: Float! @auth(roles: [ADMIN], permissions: [VIEW])

The most secure of the three, secret, does not take any parameters and returns a non-nullable
float integer. The caller must have an admin role with view permission to use this query. As a
consequence, the query is secured by both authentication and authorization, resulting in higher
requirements to perform the desired action on the resource.

122

Appendix B Good Practices

Many common software techniques, processes, and applications were used throughout cluster im-
plementation to improve overall code quality and to better and easily manage the Git1 repository
automatically. It would be virtually impossible to list and explain them all in detail. Also, there are
several guides and publications available on them. Therefore, this attachment will just briefly cover
the two most well-known and widely used techniques that have been used together, without going into
much detail.
Finally, it is explained how the cluster implementation’s final release archive bundle is generated using
a YAML configuration file and a POSIX script.

B.1 DevOps

DevOps is a technique that integrates and automates Software Development (Dev) and IT Operations
(Ops). The combination of cultural philosophies, practices, and tools improves an organization’s
capacity to provide applications and services at high velocity: changing and enhancing products
at a quicker rate than traditional software development and infrastructure management procedures.
Implementing a DevOps paradigm for a project can result in significant benefits such as increased
speed, rapid delivery, reliability, scale, improved collaboration, and security[3]. Figure B.1 depicts the
cyclical collection of DevOps phases. Depending on their primary goal, organizations might prioritize
different aspects of the DevOps paradigm.

DevOps is essential in modern software development and is intrinsically linked to the Continuous
Practices discussed in the next section.

Source: https://www.edureka.co/blog/what-is-devops

Figure B.1: Cyclical collection of DevOps phases

1https://git-scm.com

123

https://www.edureka.co/blog/what-is-devops
https://git-scm.com

B.2 Continuous Practices

Continuous Practices also referred to as Continuous Integration, Delivery, and Deployment, are soft-
ware development industry strategies that enable organizations to release new features and products
on a regular and consistent basis while simultaneously keeping the code repository in a consistent
state[17]. When a new change is made to the code and pushed to the main repository, it is automat-
ically checked, compiled, and tested to guarantee code standards, consistency, and that there are no
potentially breaking changes in the prior application’s behavior. The relationship between the three
Continuous Practices is depicted in figure B.2.

Source
Repository

Developers

 Commit

Continuous Delivery (CDE)

Continuous Deployment (CD)

Continuous Integration (CI)

CI
Server

 Test

 Check

 Build

Manual
 Acceptance

 Test
 Production

Automatic
 Acceptance

 Test
 Production

 Results

Figure B.2: Relationship between Continuous Integration, Delivery and Deployment

Two automatic workflows to manage Continuous Practices on the source repository have been
implemented in the cluster implementation using GitHub Actions2. The first workflow3 executes CI
and CDE operations, while the second workflow4 scans the code and generates security alerts if any
known security vulnerabilities are discovered. Furthermore, Dependabot5 has been added to keep all
project dependencies up to date and to inform when a security vulnerability is identified on a certain
installed version.
Because of the use of Git Hooks6, a kind of local CI pipeline that examines every file before committing
has also been developed7. Because it may be skipped with a configuration flag, this procedure does
not substitute a true CI server.
The previously mentioned CI/CDE workflow fully automates the creation of a new release8. When
a new Git Tag9 is pushed to the main repository and the CI pipeline succeeds, the current cluster
implementation code is bundled (see section B.3) and released with the same name as the Git Tag.
In the future, a CD pipeline will be implemented that automatically produces a prerelease anytime a
new change in the code is made, ensuring that the newest nightly code is always available, even if it
is not as stable as a tagged release.
It should be noted that all prior implementations of Continuous Practices rely on the GitHub platform.
Yet, there are equivalent implementations for practically every other coding platform.

B.2.1 Continuous Integration

Continuous Integration (CI) is a well-established development process in the software development
industry in which team members regularly integrate and merge development work (e.g., code). CI
allows software organizations to have shorter and more frequent release cycles, enhance software qual-
ity, and raise overall productivity. This practice involves automated software checking, building and
testing[17].

2https://docs.github.com/actions
3https://github.com/carlocorradini/reCluster/blob/main/.github/workflows/ci.yml
4https://github.com/carlocorradini/reCluster/blob/main/.github/workflows/codeql.yml
5https://github.com/dependabot/dependabot-core
6https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
7https://github.com/carlocorradini/reCluster/blob/main/.husky/pre-commit
8https://github.com/carlocorradini/reCluster/releases
9https://git-scm.com/book/en/v2/Git-Basics-Tagging

124

https://docs.github.com/actions
https://github.com/carlocorradini/reCluster/blob/main/.github/workflows/ci.yml
https://github.com/carlocorradini/reCluster/blob/main/.github/workflows/codeql.yml
https://github.com/dependabot/dependabot-core
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://github.com/carlocorradini/reCluster/blob/main/.husky/pre-commit
https://github.com/carlocorradini/reCluster/releases
https://git-scm.com/book/en/v2/Git-Basics-Tagging

B.2.2 Continuous Delivery

Continuous Delivery (CDE) aims to ensure that an application is always ready for production af-
ter passing automated tests and quality checks. CDE leverages a collection of processes, such as
CI and deployment automation, to deliver software automatically to a production-like environment.
This method has various advantages, including fewer deployment risks, cheaper costs, and faster user
feedback. Having a Continuous Delivery approach necessitates a Continuous Integration process.[17].

B.2.3 Continuous Deployment

Continuous Deployment (CD) deploys an application to production or customer environments auto-
matically and continuously. What distinguishes Continuous Deployment from Continuous Delivery
is the presence of a production environment (i.e., actual customers): the purpose of Continuous
Deployment practice is to automatically and consistently deploy every update into the production
environment. It’s important to note that CD practice implies CDE practice, but not the opposite.
While the final deployment in CDE is a manual process, there should be no manual steps in CD, where
changes are pushed to production as soon as developers commit them via a deployment pipeline.
CDE is a pull-based approach in which an organization determines what and when to deploy; CD
is a push-based approach. In other words, CDE’s scope excludes frequent and automatic release,
and CD is therefore a continuation of CDE. While CDE may be applied to all kinds of systems and
organizations, CD may only be appropriate for particular types of organizations or systems[17].

B.3 Bundle

To distribute a release of the cluster implementation, a mechanism that bundles all required files and
directories in a single archive file have been implemented. The bundle is created automatically by the
CDE workflow pipeline and uploaded on GitHub with the name recluster.tag.gz. The archive file
is composed of a configuration file (see section B.3.1) that lists all necessary files and directories, and
a POSIX script (see section B.3.2) reads the configuration file and generates the archive file, which
may then be published.
It should be noted that the CDE pipeline is not required to build a bundle. The latter enables
organizations that do not wish to use the workflow to generate a bundle or to locally test a cluster
with a different implementation without involving any workflow.

B.3.1 Configuration

The bundle configuration file, bundle.config.yaml, is written in YAML format.
The attributes structure is a mapping that adheres to the development project’s tree hierarchy orga-
nization of files and directories10. The key of an attribute is the file or directory name, and the value
can be of two types:

1. boolean
The true value indicates that the file or directory should be copied (recursively), whereas the
false value indicates that the file or directory should be ignored.
When the value is true and it is a directory, the included files and directories are copied in the
order specified by the Git index and working tree11.

2. mapping
Applicable exclusively to a directory (parent), defines a mapping of files and directories that are
contained in the parent directory.
A special metadata attribute, defined as , does not reflect a directory tree mapping and is
instead employed by the script for specific operations and management that are applied to the
current directory where the special attribute is located. At the moment, the only attribute

10https://github.com/carlocorradini/reCluster
11https://git-scm.com/docs/git-ls-files

125

https://github.com/carlocorradini/reCluster
https://git-scm.com/docs/git-ls-files

that can be defined in the metadata is run, which provides an inline POSIX command. When
generating the bundle file, all metadata attributes are examined and, if a run is identified, it is
executed. It should be noted that the working directory for run is always the directory containing
the metadata attribute. If the first two characters are ./, the absolute path of the project’s root
directory is substituted. This facilitates the execution of scripts from various directories.

Listing B.1 displays the contents of the bundle.config.yaml12 bundle configuration file. It is worth
noting the use of the metadata attribute in combination with the run attribute for executing
applications and/or programs that provide various outputs required for the release bundle.

1 __:

2 run: './scripts/inline.sh --in-file ./install.sh --overwrite'
3 install.sh: true

4 LICENSE: true

5 README.md: true

6

7 configs:

8 README.md: true

9 certs: true

10 k3s: true

11 k8s:

12 README.md: true

13 autoscaler: true

14 loadbalancer:

15 __:

16 run: 'wget --output-document=deployment.yaml https://raw.githubusercontent.com/metallb

/metallb/v0.13.7/config/manifests/metallb-native.yaml'
17 config.yaml: true

18 deployment.yaml: true

19 README.md: true

20 registry: true

21 node_exporter: true

22 recluster: true

23 ssh: true

24

25 dependencies:

26 __:

27 run: './dependencies/dependencies.sh --sync-force'
28 autoscaler: true

29 k3s: true

30 node_exporter: true

31 prometheus: true

32

33 distributions:

34 alpine:

35 __:

36 run: './distributions/alpine/build.sh'
37 README.md: true

38 logo.png: true

39 iso: true

40 arch:

41 __:

42 run: './distributions/arch/build.sh'
43 README.md: true

44 logo.png: true

45 iso: true

46

47 docs: true

48

49 scripts:

50 __:

51 run: './scripts/inline.sh --in-file ./certs.sh --overwrite

&& ./scripts/inline.sh --in-file ./configs.sh --overwrite'

12https://github.com/carlocorradini/reCluster/blob/main/scripts/bundle.config.yaml

126

https://github.com/carlocorradini/reCluster/blob/main/scripts/bundle.config.yaml

52 README.md: true

53 certs.sh: true

54 configs.sh: true

55 configs.config.yaml: true

56

57 server:

58 __:

59 run: 'npm run build'
60 README.md: true

61 package.json: true

62 package-lock.json: true

63 build: true

64 prisma:

65 schema.prisma: true

66 migrations: true

Listing B.1: Content of bundle configuration file

B.3.2 Script

To automate all bundle-related procedures, a POSIX script named bundle.sh13 is used. Its primary
function is to read the bundle configuration file, read metadata attributes, and generate a bundle
archive file containing all files and directories specified therein.
The script requires some coreutils package’s utility programs and the yq application to correctly
handle YAML file and syntax.
application.
The script behavior of the bundle can be changed using parameter flags. The acceptable setup settings
are provided in the table below.

Name Description Default Value

config-file Path to the bundle configuration file (<FILE>).
Both relative and absolute paths are supported.
It should be noted that the configuration file name does
not have to be bundle.config.yaml, but may be any name
and extension. The sole condition is that it must be in YAML

format and that the attributes structure is respected.

bundle.config.yaml

out-file Name of the file path where the generated bundle archive
file should be saved (<FILE>).
Absolute and relative paths are both supported.
By default, it is saved in the current working directory.
The extension name should always be .tar.gz to distin-
guish a compressed tar archive file.

bundle.tar.gz

skip-run Skip all commands in the metadata attribute run. false

log-level Logging level (<LEVEL>).
Attachment C provides additional information regarding
logging and logging levels.
The following logging levels are supported (listed in de-
scending order of importance):

5 fatal

4 error

3 warn

2 info

1 debug

info

13https://github.com/carlocorradini/reCluster/blob/main/scripts/bundle.sh

127

https://github.com/carlocorradini/reCluster/blob/main/scripts/bundle.sh

help Display a help message and terminate (successfully).

Table B.1: Bundle script parameters

To generate an archive bundle file, named recluster.tar.gz, that contains all files and directories
listed in the configuration file, just execute: ./bundle.sh --out-file "recluster.tar.gz"

128

Appendix C Logging

Logging1 is the process of preserving a record of events that occur in a computer system, such as issues,
errors, or just information on current operations. These events might happen in the operating system
or other applications. For each such event, a message or log entry is recorded. These log messages
may subsequently be used to monitor and understand the system’s operation, troubleshoot problems,
or during an audit. Logging is very crucial in multi-user applications to provide a centralized view of
the system’s functionality.
It is critical in the architecture implementation to log the numerous operations that occur in each
component of the cluster. The latter not only assists in understanding how the general architecture
performs and its status, but also the potential causes of an incident. During the cluster’s develop-
ment, if any components failed or did not behave as they should (e.g., no autonomous upscaling or
downscaling), monitoring and analyzing the numerous log files created was the only method to solve
the problems and understanding what and why happened. Furthermore, a logging system is available
for the multitude of utility scripts and applications that are not directly employed with the cluster
but rather during its general development.
Log interpretation is a challenging process. Log management system collects data from a variety of
sources with varying forms, purposes, and granularities. Section C.1 describes common logging levels
that are also employed in cluster development and implementation.

C.1 Levels

A log level2 is a piece of information that indicates the importance of a log message. It is a basic yet
effective method of identifying log events from one another. Maintaining defined log levels helps give
each entry meaning and better understand the significance of the related log message. Furthermore,
it is utilized to filter crucial information regarding the system state to only those that are solely
informational.
During the initialization phase, a level is chosen from the list below (sorted in descending order of
importance), with the expectation that the lower levels are ignored in favor of the higher ones.

7 SILENT

The highest possible logging level is meant to completely disable logging.

6 FATAL

The system experienced a very severe error, which caused the system to abort.

5 ERROR

Employed when the system encounters a problem that prevents one or more operations from
functioning properly but allows it to continue operating.

4 WARN

Designates potentially dangerous conditions that do not cause the system to crash.

3 INFO

The standard log level indicates informational messages about the progress at a coarse-grained

1https://wikipedia.org/wiki/Logging_(computing)
2https://sematext.com/blog/logging-levels

129

https://wikipedia.org/wiki/Logging_(computing)
https://sematext.com/blog/logging-levels

level. The information reported using the INFO log level should be strictly informative, without
the need for any essential information to be lost.

2 DEBUG

Used for information that may be required for diagnosing and debugging issues, or for running
in a test environment to ensure that everything is working properly.

1 TRACE

The most fine-grained level of information is only employed in rare circumstances where full
visibility of what is occurring is required. TRACE’s logging level is quite verbose.

Table C.1, shows the correlation between the logging level and the related logging message. The
default logging level in various implementations is often set to INFO level.

hhhhhhhhhhhhhhhhhhhhhLogging Level

Logging Message
FATAL ERROR WARN INFO DEBUG TRACE

7 SILENT

6 FATAL

5 ERROR

4 WARN

3 INFO

2 DEBUG

1 TRACE

Table C.1: Correlation between logging level and logging message
Logging message is recorded and saved
Logging message is completely ignored

130

	Abstract
	Introduction
	Context
	Goals
	Principles
	Sustainability
	Acknowledging Planetary Limits
	Hardware Reusability
	Energy Reduction
	Insourcing
	Interoperability
	Free/Libre And Open Source Software
	Dependencies Reduction

	Architecture
	Components
	Node
	Worker
	Controller

	Server
	Database
	Registry
	Cluster Autoscaler
	Load Balancer
	Example Schema

	Network
	External Network
	Internal Network
	K8s Network

	reCluster

	Implementation
	Distributions
	Packages
	Init System
	OpenRC
	systemd

	ISO Image
	Alpine Linux
	Arch Linux

	Dependencies
	Air-Gap Environment
	PostgreSQL
	K3s
	Enhancements
	Architecture
	The Choice

	Node Exporter
	Collectors
	Installer
	Graphics Processing Unit metrics

	Docker Registry
	Image Naming
	Hostname To IP Address Mapping
	Image Storage

	MetalLB
	LoadBalancer Service Type
	Address Allocation
	External Announcement

	Prometheus
	Features
	Grafana

	Management
	Configuration
	Script

	Server
	Database
	Object-Relational Mapping
	Schema
	User
	Node
	Cpu
	Storage
	Interface
	Status
	Node Pool

	GraphQL API
	Queries
	Mutations

	Upscaling
	Downscaling
	Monitoring
	Configuration

	Autoscaling
	Vertical Pod Autoscaler
	Horizontal Pod Autoscaler
	Cluster Autoscaler
	Cloud Provider
	Upscaling
	Downscaling
	Configuration

	Installer
	Benchmarks
	Power Consumption
	Installation Procedure
	Configuration Parameters
	Configuration Files
	K3s
	K8s
	Node exporter
	reCluster
	SSH

	Conclusions
	Limitations And Future Work
	Closing Remarks

	Bibliography
	Corollary Projects
	Node Exporter Installer
	Configuration
	Example
	Basic
	Advanced

	Inline
	Features
	Configuration
	Example

	GraphQL Auth Directive
	Configuration
	Type Definition
	Example

	Good Practices
	DevOps
	Continuous Practices
	Continuous Integration
	Continuous Delivery
	Continuous Deployment

	Bundle
	Configuration
	Script

	Logging
	Levels

