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Abstract

In the last twenty years, climate change has worsened the consequences

of climate extremes and anomalies. This has an important implication for

agricultural activities, which remains the primary form of livelihood in many

households in developing countries. In this Master’s Thesis, we aim to ex-

plore the potential relations between climate variability and retail food prices

by analyzing data on 1088 local markets in 31 African countries and using

precipitations, temperature, and NDVI as a proxy of climate change. A

fixed-effect model with dummy variables is used to carry out the regression

analysis. The outcome indicates the existence of a relationship between en-

vironmental variability, particularly temperature, and food prices. When

analyzing specific agricultural commodities, the effects are confirmed, espe-

cially for the most imported ones, highlighting the need for further detailed

research regarding local household cultivations.
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1 Introduction

In the decade of 2011-2020, global temperature increased of 1.1°C with respect to

the 1850-1900 levels due to the greenhouse gas (GHG) emissions deriving from hu-

man activities. GHG emissions, mainly carbon dioxide (CO2) and methane (CH4),

strongly influence global temperatures, leading to air, Earth’s surface, and ocean

warming. Unsustainable consumption patterns, extensive land use and degrada-

tion, and increased energy consumption between countries are the main source

of greenhouse gases. The increase of the global temperature and the emission of

pollutants have disastrous consequences on the nature: ocean level rising, extreme

weather events (heavy precipitations, heatwaves, droughts, and tropical cyclones)

and loss of biodiversity. At the global temperature of 1.5°C, floodings, heavy

precipitations and agricultural droughts are projected to increase in Africa, Asia,

North America, and Europe. Consequently, countries’ economies and society are

negatively affected since global warming translates in losses of people and eco-

nomic activities. The communities who contributed the least to GHG emissions,

with high confidence, are the ones who are experiencing disproportionate impacts

(IPCC, 2023).

Efforts to reduce global emissions are undertaken by the United Nations Frame-

work Convention for Climate Change through the formulation, and ratification by

192 countries, of the Kyoto Protocol, which entered into force in 2005. The sig-

natory parties must had ensured an emission reduction in GHG emissions of 5%

compared to 1990 levels, during the period 2008-2012 (UNFCCC, 1997).

In addition to climate friendly objectives, the United Nations’ General Assem-

bly formulated in 2015 the 17 Sustainable Development Goals (SDGs) with 169
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targets to achieve by 2030 (Figure 1). The SDGs Agenda is people-centred and

seeks to achieve the targets for all segments of the society. To reach the desired

goals, each Government will have to decide how to incorporate the SDGs in their

own peculiar economic and national planning (UN General Assembly, 2015).

Figure 1: United Nation’s Sustainable Development Goals

The achievement of Sustainable Development Goals targets, unfortunately, is

far from being met. In terms of climate change and climate action, extreme weather

events are destroying ecosystems and damaging society in different scopes: eco-

nomic, health, and social. To mitigate the magnitude of climate hazards GHG

emissions must be half-cut by 2030, but current efforts are not enough to limit the

rise of temperatures only seven years away from the target year. An important role

is played by climate finance which is a key factor in mobilizing financial resources

toward sustainable development and solutions. However, the commitment of de-

veloped countries to mobilize $100 billion yearly in climate finance for developing

countries, from 2020 to 2025, falls short: only $83.3 billion were mobilized. Fur-

thermore, more than 70 percent of climate financing from developed to developing

countries, in the period 2016-2020, were in the form of loans.
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Climate action efforts are needed not only to ensure the social and economic

protection of society but also to achieve food security and food access, especially

in developing countries. In 2021, nominal public spending in agriculture reached

a record-high amount of $700 billion. Government spending in agriculture as a

share of the GDP, however, fell from 0.50 in 2015 to 0.45 in 2021, except for

North America and Europe. In the same period, agricultural aid in developing

countries rose by 14.6 percent, partially because of food security concerns due

to the pandemic, but returned to pre-pandemic levels in 2021 United Nations

Department of Economic and Social Affairs (2023).

In this framework, there is a growing branch of literature studying the effects

of climate change on food security as the review studies by Kang et al. (2009)

and Vermeulen et al. (2012) suggest. Also, climate variability, proxied by envi-

ronmental indicators, is being utilized in analyzing price fluctuations of specific

agricultural products (Brown and Kshirsagar, 2015; Higgins et al., 2015; Salazar

et al., 2023). Climate indicators, namely precipitations and temperature, are used

as independent variables to analyze conflict insurgence or their impact on macroe-

conomic indicators (Jaramillo et al., 2023; Koren and Bagozzi, 2016; Schon and

Koren, 2022).

However, none of these studies offer a complete view of how the climate crisis

affects food prices. This work aims to fill this gap by employing different climate

change indicators as explanatory variables, that is, average temperature, average

precipitations, rainfall anomalies, and drought events. The current thesis will also

contribute to the exploration of the impacts of the climate crisis on specific agri-

cultural products, and to provide insights into possible adaptation and mitigation

strategies.
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2 Literature Background

Before going further, it is important to define the concept of “food security”. Ac-

cording to the World Food Summit (1996): “Food security exists when all people,

at all times, have physical and economic access to sufficient safe and nutritious

food that meets their dietary needs and food preferences for an active and healthy

life.” Based on this definition, FAO (2008) finds the concept of food security to be

a composition of four interrelated dimensions:

• Physical availability of food: it regards the supply of food, and is determined

by the level of food production, stock level and net trade;

• Economic and physical access to food: adequate income levels, expenditures

and food prices are important factors since they measure the affordability of

food;

• Food utilization: it concerns the diversification in nutrients of the food in-

take, e.g., diversity of the diet, food distribution in families and good feeding

practices;

• Stability of the other three dimensions over time: external factors can under-

mine food security even if the previous three dimensions persist over time,

such as extreme weather events, conflicts, or economic factors.

When these conditions are not entirely met, food insecurity could lead to different

consequences, such as malnourishment, and hence malnutrition, which is defined

as an imbalance, deficiency, or excess in a person’s intake of nutrients and/or

energy. Undernourishment could be an additional impact of food insecurity, which
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happens when the habitual consumption of food is not enough to maintain a

healthy and active life. Additionally, undernourishment can manifest itself in

the form of nutrient deficiency (e.g. minerals and vitamins) taking the name of

“hidden hunger” (Mbow et al., 2019). Studies have revealed that hidden hunger

can happen in both the presence or not of undernourishment: it tends to be more

present in countries where undernourishment levels are high (Muthayya et al.,

2013), but it is also frequent in Western-style diets (high content of saturated

fats, high amount of processed carbohydrates and excessive total calories) where

calcium-deficiency is high (Aslam and Varani, 2016). Undernourishment is also

used to build the PoU indicator (prevalence of undernourishment) as a measure

of food security by FAO. According to FAO (2023), the PoU remained relatively

unchanged from 2021 to 2022, and far above pre-pandemic levels (9.2% of the world

population in 2022 versus 7.9% in 2019). This slight change, however, hides the

regional and subregional differences: in Africa, Western Asia, and the Caribbeans,

the hunger level is still increasing, while in Latin America and Asia, progress was

made in terms of hunger reduction (FAO, 2023). The PoU is only one among all

the indicators utilized to measure food security. Indeed, a broad range of them

exists, and they all have shortcomings, such as the Food Insecurity Experience

Scale (FIES). The FIES makes use of surveys to analyze the overall household’s

inability to access food, but the main shortcoming is that it does not measure

if the actual diet is adequate or not concerning all the nutrition aspects (Mbow

et al., 2019).
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2.1 Global food system trends

During the period 1950-2010, the global food requirement increased from 2300

kcal/cap/day to 2400 kcal/cap/day, leading to an increase in food surplus from

310 kcal/cap/day to 510 kcal/cap/day. Estimates show that the CO2 emissions

related to the production of food surplus increased from 130 Mt CO2eq/year to 530

Mt CO2eq/year (Hiç et al., 2016). Even if the calorie intake increased during the

last six decades, hunger reduction is far from being met. In 2022, hunger increased

from 22.2 to 22.5% (compared to 2021) in sub-Saharan Africa, with the largest

increase in Southern Africa (1.1%). The causes of such food insecurity are found

to be climate change, conflicts, the COVID-19 pandemic, and the Russia-Ukraine

war, which all contributed to increased food prices. Long-term projections, which

include both the COVID and the Russia-Ukraine conflict scenarios, estimate that

600 million people globally will be chronically undernourished in 2030, with a

significant increase of people affected in Africa by 2030 (FAO, 2023). Food insecu-

rity levels are heterogeneous across countries and regions, but also between urban

and rural areas and genders. For example, hunger levels are lower in urban and

peri-urban areas: indeed 33.3% of adults living in rural areas are food insecure,

compared to 28.8% and 26% of the same group living in peri-urban and urban ar-

eas respectively (FAO, 2023). In terms of gender diversity, food insecurity affects

women more than men globally. The magnitude of the gender gap on food security

levels, however, differs across regions: in Europe, women are 4.7% more likely to

experience some form of food insecurity compared to men, while in Sub-Saharan

Africa the percentage stands at 2%. The observable drivers of the gender gap

impact on food security are found to be household income, social networks, and
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educational attainments (Broussard, 2019).

2.2 The impact of climate change

The effects of a changing climate on crop yields are still uncertain. Different

studies tried to analyze the impact of increasing GHG emissions on a variety

of crops, such as maize, rice, and wheat by using statistical models to project

future yields. Some of these models are the CERES-Maize (Crop Environment

Resource Synthesis), CERES-Wheat, SWAP (Soil – Water – Atmosphere – Plant)

and InfoCrop (Aggarwal et al., 2006; Kang et al., 2009). Studies find contrasting

results on the impact of increased GHG emissions on crop yields, suggesting that

a further understanding of the phenomenon is needed to improve the resilience of

the food system (Anwar et al., 2007; Krishnan et al., 2007; Walker and Schulze,

2006; Akpalu et al., 2009; Yao et al., 2007). Climate variability can also affect

food prices leading to price hikes that undermine the affordability of meals and

staples (as described in section 2.4.4). Thus, poverty increases the risk of food

insecurity, as analyzed by Iannotti et al. (2012) in Guatemala where low-income

levels are correlated with low quantities of micronutrient intakes (hidden hunger).

The impact of climate change extends also to the labor market. Jessoe et al. (2018)

observed the variability of local employment due to increasing temperatures in

rural Mexico, using a panel of 28 years on local employment. They found that

the occurrence of heatwaves reduces the probability of local employment by 1.4%

and increases the probability of US migration from 0.05% to 2.5%. Rising climate

extremes will expand the dimension of urban poverty, leading also to increased

disease transmissions (Rosenzweig et al., 2018; Bartlett, 2012).
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2.3 The African context

In Africa, the achievement of the Sustainable Development Goals is far from meet-

ing the desired targets in almost all African states. The reason behind the difficulty

in pursuing sustainable development policies and projects is the multi-faceted cri-

sis in which the African Continent is living, from climate change impacts to the

scourge of armed conflicts, political instability, and migration. According to the

Institute for Economics & Peace (2022), Sub-Saharian Africa hosts five of the ten

least peaceful countries in the world (Central African Republic, Democratic Re-

public of Congo, Somalia, South Sudan, Sudan), and Mali, Burkina Faso, Niger,

Nigeria, and Somalia are among the top ten countries most impacted by terrorism

(Figure 2 ). Armed conflicts in Africa have repercussions on the economy and, in

turn, on society. In 45 countries from Sub-Saharan Africa, over the period 1989-

2019, armed conflicts had negative consequences on the countries’ economy, by

reducing revenues, increasing military expenses, and worsening the fiscal balance

which resulted in higher debt levels. This involves a shift of resources from social

to military spending, hampering the development (Fang et al., 2020).
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Figure 2: Armed conflicts in Africa in 2022. Source: IISS.

As we can see from Figure 3, the population in refugee settlements mostly

corresponds to the countries with ongoing conflicts.

The rising number of conflicts coupled with the worsening of climate extremes,

induce migration from the affected countries to neighbors, leading in turn to the

scourge of more conflicts. However, the relationship is not linear. Reuveny (2007)

argues that conflicts arise if two or more of the following factors are present,

facilitated by some auxiliary conditions:

• Competition: displaced people arriving in the neighboring country exert pres-

sure over the use of resources which could lead to rising tension levels and,
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Figure 3: image showing the population in refugee settlements where blue points
correspond to population between 250 and 5000 , green points from 5000 to 10’000,
yellow from 10’000 to 50’000, and red from 50’000. Source: European Joint Research

Center, from Baldi et al. (2022).

finally, to conflicts. Consequently, pressure can also expand beyond the

country’s borders leading migrants to contest neighboring resources.

• Ethnic tensions : it may be the case that migrants and residents belong to

different ethnic groups with long-standing ethnic disputes. Residents may

feel threatened as migrants try to reunite with their home country, leading

to conflict and riots.

• Distrust : in this case, the origin country might think that the host country

is accepting migrants to alter the ethnic balance of the origin country. On

the other side, the receiving country might think that migration is happening
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intending to penetrate the host country. Displaced people in turn may resent

perceived or actual mistreatment from the host.

• Fault lines : migrants can create socio-economic fault lines. For example, mi-

grants and residents can start to compete over jobs, or migrant and resident

farmers may start to compete over land. Political tensions may arise if rebels

provoke frustrated migrants to challenge the host country.

• Auxiliary conditions : underdeveloped economies have more difficulty in ab-

sorbing migrants in their socio-economic sector compared to developed economies

where resources are not scarce and job opportunities are often available for

migrants. This aspect can induce political conflicts as environmental mi-

grants may join rebel forces, thus intensifying violence.

Conflicts are not the only distressing events affecting the African states’ economic,

political, and social stability. Indeed, climate change is a factor that needs to be

considered due to its global impact. Specifically, Africa’s climate is continuing

to experience warming trends. The mean temperature in 1991-2021 increased on

average by 0.3°C per decade compared to the +0.2°C in 1961-1990. The highest

temperature anomalies were registered in North Africa and West Africa, where

temperatures were respectively 1,22°C and 0,91°C higher than the 1981-2010 av-

erage. In addition to temperature anomalies, Africa is also experiencing rain-

fall anomalies across all the states. Below-normal rainfall levels were recorded in

North Africa reaching a negative average of -160mm. The rainfall season in West

Africa was subject to a delayed onset and an early cessation. In Southern Africa,

the rainfall deficit was over 160mm, specifically in central South Africa, western

Angola, eastern Namibia, western Botswana, and northern and southern Mozam-
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bique. Since 1990, the global mean sea level has risen on average of 3,3 ± 0,4

mm per year, a trend which is accelerating due to ice melt and ocean warming.

The highest sea level rise was registered on the coast of the Red Sea, followed

by Tanzania and Mozambique coasts (World Meteorological Organization, 2021).

The occurrence of these events leads to high food insecurity levels. In East Africa,

food insecure people are projected to be 60 million by January 2024 (Figure 4),

since households’ stocks have been already depleted, staple food prices are abnor-

mally high, and income-generating opportunities remain limited. Moreover, the

withdrawal of Russia from the Black Sea Grain Initiative threatens the region,

specifically Ethiopia and Somalia which heavily rely on Ukranian wheat imports

(World Bank, 2023).

Figure 4: Famine Early Warning System projection of future population in need of
food assistance in 2024. Source: FEWS NET.
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2.4 The underlying causes of food price volatility

Global food prices are affected by a different number of factors, often interrelated

(von Braun and Tadesse, 2012). Drawing on the Okou et al. (2022) classification,

these can be grouped into four categories: supply factors, demand factors, exposure

to international markets, and adverse events (climate shocks and conflicts). In the

following paragraphs, the determinants of these categories are described.

2.4.1 Supply factors

In the developing world, rural areas are mostly inhabited by poor people, who

find agriculture their main economic activity. In Africa, agriculture remains the

most important sector in many countries, e.g. Chad, where agriculture accounts

for almost 50% of the GDP and employs 75% of the population (Oxford Business

Group, 2021). In the SSA’s agricultural sector, increasing attention is being given

to the reduction of post-harvest losses (PHL). There are no precise estimates on

the exact amount of PHL since they differ from the type of crop, country-specific

characteristics, and climatic factors (Kaminski and Christiaensen, 2014; Stathers

et al., 2020). However, food losses limit the capacity of a country to adapt to

international price shocks and supply disruption caused by conflicts or extreme

weather events (Tadesse et al., 2014). Disruption in the price of intermediate inputs

utilized for agricultural activity, such as fertilizers and pesticides, also indirectly

affects the final price of food (Schmidhuber et al., 2020). During the COVID-19

pandemic, the increase in the transport costs of pesticides hampered the ability

of East African countries to combat the locust outbreak, thus threatening food
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security1. Input and production subsidies can be used as a cushion against input

price volatility, by lowering production costs and import demand. Many African

countries tried to promote the use and adoption of fertilizers by implementing

subsidy schemes gaining, however, scarce results (Morris et al., 2007). As Coady

(2004) suggests, the efficacy of targeting intervention in developing countries is

effective where economic well-being and inequalities are easier to identify. With

that said input and production subsidies, if not well delivered and built, can lead

to ineffective outcomes.

Related to the supply side of commodities, another factor that impacts food

prices is the level of import dependence of a country. For example, COVID-19

restriction policies had an uneven short-term impact on food prices in low- and

middle-income countries (LMICs). In LMICs, the increase in food prices is higher

in countries in which the market is integrated and that are more dependent on

trade with other markets. Moreover, the highest increase in price regarded the

commodities that need to be imported (Dietrich et al., 2022).

Transport and geographical characteristics also affect food prices, by acting

on the rural road connectivity, characterized by transport bottlenecks that in-

crease food prices in rural and urban areas, and decrease market access from the

rural population (Okou et al., 2022). Gebresilasse (2023) found that road net-

works increased the value added per worker by 18 percent, and the extension of

services increased it by 24 percent. Not only that, but agricultural productivity

also increased by 29.4 percent in the 2010-2016 period. The side effect is that

the presence of roads increases competition between local farmers and imports of

1https://www.bloomberg.com/news/articles/2020-03-22/coronavirus-slowing-desert-locust-
response-in-east-africa#xj4y7vzkg
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crops and the access to roads changes the farmer’s competitive advantage. Access

to roads can lead also to a shift out from agricultural activity the area cultivated

in villages with only one road decreases by 6 percent since farmers shift out from

agriculture. In contrast, in villages with both roads and access to road exten-

sions, the area cultivated increased by 4 percent due to increased specialization

and engagement of farmers in agricultural activity. In addition, the construction

of road infrastructure is found to influence the adoption of modern and improved

agricultural inputs, the diversification of crop cultivars, the level of labour hiring,

and the commercialization of farm output (Shamdasani, 2021).

Rural road connectivity and geographical characteristics play a key role in

affecting food prices, thus determining market integration. To test market inte-

gration, price differentials (and then their convergence) between markets are calcu-

lated (Brenton et al., 2014; Ravallion, 1986). In the era of climate change, spatial

food price transmission is being object of empirical investigations to understand

how climatic shocks affect the price differential between markets. Salazar et al.

(2023) analyzed how the price differential of long-shelf tomatoes and Asterix pota-

toes in Chile respond to drought shocks, by using the Standardized Precipitation

Evapotranspiration Index (SPEI) (see Vicente-Serrano et al. (2010)). It is found

that drought shocks reduce the price differentials of these two commodities, thus

implying the presence of market integration. On one hand, the results cannot be

generalized, while on the other hand, they offer an insight into price transmission

under climatic stress. Market integration, though, has a limitation, that is, the

informal trade happening between countries, as in Uganda where informal exports

to its five neighbouring countries accounted for USD 231.7 million in 2006 (Lesser

and Moisé-Leeman, 2009).
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2.4.2 Demand factors

Overall, food demand is expected to increase from 35% to 56% in 2010-2050

(Van Dijk et al., 2021). At the core of this phenomenon, two important fac-

tors drive the demand for food upward: population growth and changes in food

consumption choices. Population growth is expected to rise to 9.1 billion in 2050,

and most of this growth will happen in developing countries, such as sub-Saharan

Africa (+114%) and East and Southeast Asia (+13%). Estimates indicate that

to be able to feed 9 billion people, food production should increase by 70 percent

worldwide. For example, annual cereal production should increase by 1 billion

tonnes; meat production should reach 470 million tonnes in 2050, by which 70

percent is produced by developing countries (FAO, 2009). The shift in food con-

sumption choices also exerts an impact on the production of food and food prices,

mainly determined by the rising level of income per capita. For example, China’s

economic growth, and per capita income growth, led to a shift in animal-based

products, which will in turn increase the agricultural output needed to satisfy that

demand in the future (Fukase and Martin, 2016). In Africa, the income elasticity

of demand is higher for meats, fish, eggs, dairy, and beverages compared to staple

foods like cereals, legumes, nuts, fruit, vegetables, tubers, fats, and oils (European

Commission. Joint Research Centre., 2015), which means that the quantity of

these categories of food increase as the income rises.

2.4.3 Market factors

Okou et al. (2022) analyzed cross-country differences, in terms of the quality of

monetary and fiscal policies, debt-to-GDP ratio, and per capita income, finding
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different scales of impact on staple food prices. Monetary policy’s quality, mea-

sured with the Independence, Accountability, Policy and Operational, Strategy

and Communication (IAPOC) index, positively influences food prices, indicating

that central banks can combat general inflation by increasing the quality of mone-

tary policy interventions. However, commodity price shock responses should adapt

to the countries’ specific economic structure (De Gregorio, 2012). Also, an increase

in the debt-to-GDP ratio increases food prices by 0.1 percent suggesting a weak

fiscal management that could weaken the local currency. In terms of per capita

income, an increase of one percent is associated with a decrease of 1.2 percent in

food prices, a result in line with Engel’s Law. Tadesse et al. (2014) analyzed the

drivers of food price spikes in the timespan 1989-2009 finding that excessive specu-

lative activity exerts a positive and significative impact on price spikes. Moreover,

USDA supply forecasts influence prices through production expectations, and oil

price spikes also impact positively prices through demand, supply channels, and

increased index-fund activities. The one-way relationship between oil prices and

agricultural commodity prices is often explored by observers (Dancy, 2012; West-

hoff, 2012). Also in the literature, some studies explore the positive correlation

existing between oil prices and food prices, suggesting that an increase in oil prices

leads to an increase in the demand for agricultural inputs needed for biofuel pro-

duction, thus increasing corn price (Esmaeili and Shokoohi, 2011; Taghizadeh-

Hesary et al., 2019; Von Braun and Pachauri, 2006). One concern is that causality

could run even in the opposite direction (from food to oil). An example is given

by China’s agricultural expansion which led to a higher demand for agricultural

machinery, which pushed oil prices upward, invalidating the one-way relationship

(Baumeister and Kilian, 2014). Another example comes from the U.S. market
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where oil and biofuel price shocks are found not to influence the corn price. On

the opposite, corn price shocks seem to impact the short-run production costs of

ethanol (Gardebroek and Hernandez, 2013). The exposure to the international

food market could stabilize domestic food prices, and act as an insurance against

domestic price shocks. Bradford et al. (2022) utilize the efficient risk-sharing hy-

pothesis to analyze how much trade can insulate domestic consumption against

domestic output shocks. They examined three commodity markets (maize, wheat,

and rice) and found that the maize market performs as poorly as the rice market

in providing insurance against domestic shocks. Instead, the wheat market per-

formed efficiently as they expected. The reason behind the poor performance of

the rice and maize markets can be that these markets have a high level of product

differentiation, which leads to less protection from domestic shocks.

2.4.4 Adverse events: climate shocks and conflicts

The existent literature on the economic effects of climate shocks on food prices

is relatively recent, which may reflect the urgent need to tackle food insecurity

and adaptation/mitigation efforts in the agri-food sector towards climate change.

However, the effects of climate change on agricultural productivity, and thus food

security, are still unclear. World food supply simulations show that increased CO2

levels will impact developing countries more than developed countries. Precisely,

results show that the increase in carbon dioxide levels would increase cereal produc-

tion in developed countries while decreasing it in developing countries (Rosenzweig

and Parry, 1994). The countries in which crop production is expected to decline

are the same experiencing food scarcity and hunger problems (Wheeler, 2013).

In line with Wheeler (2013), Shi and Tao (2014) found that an increase of 1°C
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in the global temperature in the period of 1961-2010 decreased maize yields by

more than 10% in 8 African countries and 5 to 10% in 10 countries. A study by

Kabundi et al. (2022) analyzed the impact of climate shocks (precipitations and

temperature shocks) on food inflation over a wide variety of countries, utilizing

local projection methods. Their sample is composed of 183 countries from 1970

to 2018 and the precipitation shocks considered are storms, floods, and droughts.

They classified extreme weather events into two categories, moderate and severe,

by using a disaster intensity dummy built by Becker and Mauro (2006). The au-

thors categorized countries according to the classification proposed by the IMF

in the World Economic Outlook, that is: advanced economies (AE), emerging

markets (EM), and low-income and developing countries (LIDC), and by inflation

targeting (IT) and non-inflation targeting (non-IT) countries (Fratzscher et al.,

2020). They found that the impact of climate shocks on inflation is heterogeneous

between countries, and it depends on the type of weather event, the country’s

economy, and the monetary regime. As a matter of fact, for AE countries, the

impact of weather shocks on inflation seems to be statistically insignificant in the

first year, while in the second year, it tends to decline. For EM countries, temper-

ature shocks have a short-term impact on inflation while precipitation shocks have

a persistent deflationary impact. In LIDCs, instead, the impact of temperature

shocks is muted, while it is positive for negative precipitation shocks. Moreover,

IT countries respond better to food inflation than non-IT countries.

From a different perspective to the previous study, climate shocks are found

to impact macroeconomic outcomes in Fragile and Conflict-affected States (FCS)

and non-FCS. Econometric analyses show that environmental disasters would lower

cumulative GDP up to 4 percent three years after the event, and only 1 percent
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in non-FCS. The negative effect of droughts on GDP in the long term will act

through lower crop productivity, lower food production, and decreased investments

(Jaramillo et al., 2023). With regard to droughts, Schaub and Finger (2020)

analyzed the impact of severe drought events on hay, feed wheat, and barley prices

in two South German states. The SPEI was used as a proxy for extreme drought,

and the results show that hay prices increased by 15% from month 3 to month

14 after the shock. Feed wheat and barley, instead, were not influenced by high-

temperature shocks, whether the shock was regional or national. In addition to

these studies, ENSO-induced climate variability is found to influence the variation

of international wheat prices in Argentina, Australia, Europe and United States

(Ubilava, 2017).

A novel approach to better understand the impact of climate variability on

agriculture is by using satellite imagery coupled with weather and environmental

indicators (usually temperature, and precipitation). A branch of literature focuses

on using the Normalized Difference Vegetation Index (NDVI), which measures

the greenness of a patch of land by capturing the light absorbed and reflected by

leaves2. The index is calculated from the data obtained by the Advanced Very High

Resolution Radiometer (AVHRR) which is composed of five detectors sensible to

the visible and near-infrared regions of the spectrum. The NDVI is then defined

by the current formula:

NDV I =
NIR− V IS

NIR + V IS

Where NIR and VIS are the reflectances in the near-infrared spectrum (0.725

2https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring vegetation 2.php
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µm to 1.1 µm) and in the visible spectrum (0.58 µm to 0.68 µm) respectively. The

chlorophyll density determines the degree of absorption of chlorophyll in the NIR,

and the reflectance in the VIS region emitted by green leaf density both define the

NDVI (Davenport and Nicholson, 1993; Tucker et al., 1985). The index can take

values between -1 and +1, where negative (positive) values are associated with low

(high) greenness levels. The NDVI can provide information on climate variability

because of its relationship to different indicators such as CO2 emissions (Tucker

et al., 1986) and rainfall (Davenport and Nicholson, 1993). Moreover, it can pro-

vide information on different scopes such as the temporal and spatial mapping of

diverse types of grasslands (Reed et al., 1994) and the level of land degradation

(Holm et al., 2003; Thiam, 2003), to improve crop yield predictions given its early

explanatory power (K. R. Manjunath and Purohit, 2002; Wall et al., 2008), but

also to improve the analysis of weather shocks and disasters on vegetation such as

droughts (Ramesh P. Singh and Kogan, 2003), risks of fire (Maselli et al., 2003),

the occurrence of frost (Tait and Zheng, 2003) and floods (Wang et al., 2003).

NDVI measures, however, possess some shortcomings, such as: mixed pixels (a

pixel encompassing both water and land), misregistration of the image taken from

the satellite, comparison between NDVI pixels with no knowledge of the area of

interest, cloud coverage in specific spatial locations (e.g. humid tropics) (Pettorelli

et al., 2005).

Given its relevance in remote sensing for environmental studies, the NDVI is

recently being used in agricultural economics as a proxy of weather variability

to assess the relationship between climate change and crop yields and to assess

food security levels. Brown and Kshirsagar (2015) observed the short-run impact

of local weather disturbances on monthly domestic food prices in the period of
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2008-2012 using NDVI anomalies as a proxy for weather disturbances. Analyz-

ing data from 554 local commodity markets in 51 countries, they found that 19

percent of them were affected by local weather disturbances, 9 percent by inter-

national prices, and 4 percent by both previous factors. Specifically, 29 percent of

the 160 markets analyzed for maize are influenced by local weather shocks (and

international prices), while 15 percent of the 114 markets for rice are impacted

by domestic climate shocks. Regarding rice, a striking result is that most of the

markets impacted by climate change are the ones in which rice is locally cultivated.

The observed relationship between NDVI anomalies and food prices is inverse, in-

dicating the importance of precipitations in countries where crops are principally

rainfed. Specifically, negative large NDVI anomalies were followed by food price

shocks. Higgins et al. (2015) used NDVI data to improve millet price forecasts

using monthly price data from 162 local markets during the 1992-2008 period in

three African countries: Burkina Faso, Nigeria, and Mali. Findings indicate that

using remote sensing data reduces forecast errors by up to 2 percent. However, the

explanatory power of NDVI is low concerning millet, possibly highlighting specific

commodity characteristics that interact with the environment. NDVI data was

also used, coupled with maize price data, to explore the relationship between food

prices and low birth weight in Kenya. The results suggest that a decrease in

NDVI is associated with negative infant health outcomes. Instead, an increase in

NDVI values is associated with better nutrition levels in the presence of low prices

(Grace et al., 2014). Brown et al. (2012)also utilized NDVI information with local

price information to build food price indices that can improve food security as-

sessments and the delivery of humanitarian aid, differently from the FAO cereals

index which only considers countries integrated with international markets. Fur-
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thermore, Jaramillo et al. (2023) mapped irrigated and rainfed agricultural lands

by using NDVI-derived images to assess climate change’s impact on these two dif-

ferent types of cultivations. The results highlight a higher vulnerability level of

rainfed agricultural fields compared to irrigated lands due to their less reliance

on weather patterns. Coupled with extreme weather events, conflicts negatively

impact food security and societal well-being. The findings related to the effects

of wars on food security and food prices are mixed, highlighting the difficulty in

disentangling the multiple, and often highly localized, aspects of complex crises

affecting each country (Buhaug et al., 2015). Indeed, the effects of wars on agri-

culture depend on the scale and the nature of the conflict, and also if the conflict

is localized enough to contain the decline in production (Flores, 2004). It is found

that wars exert a negative effect on food prices, more than natural disasters, by

increasing staple food price level up to 4 percent (Okou et al., 2022). Conflicts

have an indirect effect on food availability, and thus food prices, by wrecking irri-

gation schemes and displacing farmers to other places, leaving the cultivated area

more vulnerable to climate shocks (Jaramillo et al., 2023). Raleigh et al. (2015)

investigated the relationship between conflicts, climate variability, and food prices

by using data from 113 first-level administrative unit markets from 24 African

states. Their findings suggest that high conflict rates are expected in places where

food prices are high and in turn violence raises the price of commodities. Ad-

ditionally, unexpected dry conditions increase the frequency of conflicts, and low

rainfall levels negatively affect food prices and indirectly influence the scourge of

conflicts. These results can be complemented by the study of Koren and Bagozzi

(2016) who found that low per capita food levels and warmer temperatures (with

low precipitation levels) increase the probability of experiencing conflicts.
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3 Data and Methods

The objective of the work is to explore the relationship between climate variabil-

ity and retail food prices in local African markets. To proceed with the analysis,

food price data were downloaded from the World Food Program (WFP)3 database,

which provides information about economic and climatic factors to complement

food security analyses. Price data fromWFP is collected through various methods,

such as face-to-face interviews, remote calls, crowdsourcing (spontaneous contribu-

tion), and web-scraping (to find and extract price data on the web). The selection

of markets to monitor is typically done by answering two major questions: how

important is the market to the targeted population, and how important is the

market as a hub in the domestic market system (Caccavale and Flämig, 2017).

Climate information was gathered from the AfroGrid dataset4 (see Schon and

Koren (2022)) which provides information for researchers and policymakers about

climate variables (NDVI, temperature, and precipitations), conflicts and casualties,

and socio-economic factors (population and nighttime light emission) from 1989 to

2020. The data is integrated into 0.5 x 0.5 resolution grid cells which correspond

to 60 kM x 60 kM geographic squares at the equator and a decreasing size moving

toward the poles. It is possible to integrate own data exploiting square centroid

coordinates, country IDs, and correlates of war.

In addition, information about climate shocks events was downloaded from the

Emergency Events Database (EM-DAT) created from a joint initiative between the

Centre for Research on the Epidemiology of Disasters (CRED) of the University

3https://dataviz.vam.wfp.org/version2/economic/prices
4https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/LDI5TK

26

https://dataviz.vam.wfp.org/version2/economic/prices
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/LDI5TK


Figure 5: Bar graph showing the number of droughts and floods in the African
continent from 2000 to 2022. Personal elaboration.

of Louvaine, and the World Health Organization (WHO)5. The database reports

the happening of disasters, divided by Natural and Technological. The disasters

considered for the analysis are droughts and floods. A first look at the data can

start to tell something about the impact of climate extremes on society. Figure 5

below shows the occurrence of droughts and floods from 2000 to 2022.

5https://www.emdat.be
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It can be observed that the number of flood events is higher compared to

droughts. But the impact scale is different: flooding events tend to be more local-

ized in coastal regions, river basins, and lakes, while droughts tend to cover a wider

area of land. This phenomenon can be observed in Figure 6 which displays the total

number of people affected by the two climate extremes. It is clear from the graph

Figure 6: Bar graph showing the total number of people affected (in millions).
Personal elaboration.

that droughts tend to affect a higher number of people relative to floods. Moving

to the data management process, the price information dataset was analyzed to

inspect for missing data and irrelevant information. To overcome the problem of

missing information, price data regarding a common commodity were aggregated,

e.g., all the prices for small-shelled and large-shelled groundnuts were merged into
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the general category of “Groundnuts”. Food products having a high frequency

of missing data were dropped out of the analysis, along with all non-commodity

price information. The next step was to convert price information into a common

currency: the international dollar. The conversion was carried out by using Pur-

chasing Power Parity (PPP) implied conversion rates downloaded from the World

Bank database6 and then dividing commodity prices by the rate. The rationale

behind the use of PPP conversion rates rather than market exchange rates is that

PPP measures the quantity of foreign currency needed to buy the same amount

of goods in the analyzed country. PPP rates are collected and calculated by the

International Comparison Program (ICP) by issuing surveys to countries to collect

price information (ICP, 2013). Surveys, however, are issued in different reference

periods, leading to one of the biggest drawbacks of PPP: since data is available

only in specific time intervals, missing data must be estimated, which can lead to

inaccuracies7. Previous ICP rounds were carried out in 2005, 2011 and 2017. The

data in between rounds is interpolated. Indeed, the PPP conversion rate used for

the transformation is estimated.

In parallel with this process, the AfroGrid dataset was cleaned of unneces-

sary information, keeping only climatic variables, that is average temperature,

average precipitation, temperature and precipitation anomalies, the Standardized

Precipitation Evapotranspiration Index (SPEI), average NDVI levels, minimum

and maxim NDVI, and the sum of nighttime light data. The dataset was cleaned

of not available NDVI information since, in some grids, the presence of water

cannot be used to calculate the index. After, mean, maximum, and minimum val-

6https://databank.worldbank.org/source/world-development-indicators
7https://www.imf.org/en/Publications/fandd/issues/Series/Back-to-Basics/Purchasing-

Power-Parity-PPP
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ues of NDVI were extracted from the dataset, and also temperature and rainfall

anomalies. The trend of climate anomalies and NDVI values is explored in the

plots below, which suggest an intuitive relationship between the variables. Such a

relationship, indeed, is confirmed in the literature and exploited, for example, to

improve the analysis of the impacts of massive-scale events, such as the El-Niño

Southern Oscillation (ENSO)(Anyamba and Eastman, 1996). Graph a shows that

positive temperature anomalies and negative precipitation anomalies are followed

by negative NDVI values, specifically during 2005, 2016, and 2017. This means

that a lack of rainfall and an increase in temperature leads to a decrease in vege-

tation levels. The inverse can be observed graph b in which increasing rainfall and

decreasing temperature anomalies lead to higher NDVI values.

After preparing both price data and the AfroGrid dataset, each market location

in terms of latitude and longitude was found using Python. Coordinate research

was characterized by a low degree of error since some markets were located in

unnamed areas or cities with the same name as other locations, leading Python to

assign a wrong coordinate. Therefore, a few market coordinates needed a manual

correction. The next step of the creation of the dataset was to merge the market

coordinates dataset with the price information dataset on STATA, and then merge

it with the AfroGrid information. Table 1 shows the structure of the merged

datasets.

Successively, retail price data relative to the selected commodities was analyzed

to see the frequency of missing data. Since price information is heterogeneous in

terms of years, it was important to choose a starting year for the analysis. By an-
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(a)

(b)

Figure 7: Line plots showing the trend of average NDVI values against average
temperature and precipitation anomalies in the period 2003-2020. Personal elaboration.
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DATASET STRUCTURE

VARIABLES OBSERVATIONS Unique values Mean Min Max

Country 376’733 31 . . .

Administrative Units 376’733 303 . . .

Markets 376’733 1088 . . .

Price (in PPP) 276’400 97’663 62.56097 0.0017524 20034.44

Average total precipitations 369’837 4575 1038.376 11.6 3155.65

Average temperature 369’837 5167 24.06258 4.85 37.34

Rainfall anomalies (maximum) 337’903 4982 .1952666 -3.6 5.03

Commodities 376’733 103 . . .

Sum of nighttime lights 369’837 4468 8414.886 0 52060

Table 1: The table shows the structure of the dataset in STATA using the codebook
command.

alyzing missing prices per country, it was possible to discard the countries where

there was no observation. Ultimately, after leaving out from the sample Alge-

ria, Eritrea, Eswatini, Nigeria, United Republic of Tanzania, Zimbabwe, Guinea-

Bissau, and Gabon, the sample resulted in 31 countries starting from 2012 to

2018. The choice of keeping the timespan up to 2018 is motivated by the presence

of global shocks that could distort the analysis (the COVID-19 pandemic and the

Russia-Ukraine war). Table 2 shows the top 10 countries from the sample with the

highest prices in logarithm. Sierra Leone and Liberia are the two countries whose

values are far higher than other countries. The reasons might be that both coun-

tries are characterized by a very hot and very wet climate, making them highly

subject to floods, heavy rains, droughts, coastal erosion, and landslides which

negatively impact the population (Ishizawa et al., 2020; The World Bank Group,

2021). Regarding Sierra Leone, the high price levels can be explained by the price-

setting behavior of entrepreneurs who tend to adjust their prices in response to
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COUNTRIES PRICES IN LOG

Sierra Leone 7.616809

Liberia 7.450596

Ethiopia 1.776684

South Sudan 1.608364

Lesotho 1.606025

Angola 1.542138

Madagascar 0.9833402

Congo 0.8726164

Mauritania 0.7656989

Gambia 0.7652534

Guinea 0.707812

Table 2: Ranking of the top 10 African countries with the highest prices.

specific events (Kovanen, 2007). Figure 8 show the average NDVI, temperature,

and precipitation values in 2018 for the final sample. It is possible to observe in (a)

that high average NDVI values are registered in countries where average precipi-

tation levels are higher, thus indicating a high presence of vegetation. Contrarily,

high average temperature levels (c) are registered in the Saharan-Sahelian desert

regions. The maps also show an important factor that needs to be accounted for

in the analysis, that is, geographical characteristics. As explained before (with

Sierra Leone and Liberia) each country is peculiar in terms of biodiversity, natural

capital, and morphological characteristics, which imply different land use for agri-

culture and crops cultivated. In this context, each country experiences climatic

events differently from others, and that could have an impact on local agriculture.
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(a) (b)

(c)

Figure 8: Maps showing environmental data for 31 countries in 2018. Personal
elaboration on STATA using grmap command
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A first exploration of the relationship between food prices and climatic factors

(precipitations, temperature, and NDVI) can be made by plotting price data with

average rainfall levels, average registered temperature, and average NDVI. Plot a

shows how a drop in NDVI in 2015 was followed by an increase in prices up to

2017, while NDVI values were increasing. A comparison with plot b shows also

the increase in precipitation levels in the same year, confirming the established

relationship between vegetation greenness and rainfall. In plot b, it can be seen

how a drop in average yearly precipitations corresponds to an increase in prices.

Plot c show the trend of temperature with price. It is interesting to note that a

temperature increase goes hand-in-hand with a price increase, and an initial re-

duction in average temperature is also associated with a decrease in prices. By

comparing the second and third graphs, we can see the inverse trend between av-

erage temperature and rainfall: increasing temperature corresponds to decreasing

precipitations. However, the relationship cannot be only assessed by the plots,

and further investigation is needed to explore the interconnection.

Since the aim of the work is to explore the potential relationship between

climate variability and food prices, the econometric model selected for this end

is a fixed effect model with dummy variables. This particular technique allows

researchers to make conditional inferences, that is, to draw conclusions on the

population parameters that are the object of study, and to not generalize as in

random-effects models (Hedges and Vevea, 1998). The sample object of study

is non-random, so the appropriate model is the fixed-effect. A model with fixed

effects assumes that there are unobserved and time-invariant characteristics that

can lead to the “omitted variable bias”, which undermines the reliability of estima-

tions. To account for the unobserved characteristics, two mathematical methods
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are available: time de-meaning and inclusion of dummy variables. The first method

eliminates the unobserved time-fixed effect by differentiating the mean of the vari-

ables on both sides of the equation. Since the unknown parameter is time-fixed, its

mean is equal to its value, thus it gets eliminated from the equation. The second

method makes use of the inclusion of dummy variables to “absorb” the unobserved

parameter. Both methods yield the same estimation of the beta coefficient. One

characteristic of the dummy variable model is that its R2 tends to be higher with

respect to the de-meaned model because of the inclusion of additional variables.

The classical fixed effect model is described as follows:

Yit = β1 xit1 + β2 xit2 + . . .+ βk xitk + αi + εit (1)

Where:

• Yit: is the dependent variable (of individual i at time t);

• xitk:are the independent variables of individual i at time tt for the k-th

observation;

• βk: are the coefficients of the independent variables;

• αi: is the unobserved time-fixed error term;

• εit: is the error term for individual i at time t.

With respect to the analysis to carry out, the dummy variable method was chosen

to account for αi because the inclusion of dichotomic variables allows to explicitly

capture the unobserved heterogeneity of αi.
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(a)

(b)

(c)

Figure 9: Line plots showing the time trend between environmental variables and
prices during the period 2012-2018. Personal elaboration.
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The fixed effect model with dummy variables is then described as follows:

Yit = β1 xit1 + β2 xit2 + . . .+ βk xitk + dit1µi + . . .+ ditkµi + εit (2)

Where ditk corresponds to the dichotomic variables which take a value equal to 1

if a specific condition is satisfied, and 0 otherwise.

Two models were constructed to explore the relationship between climate vari-

ability and prices, and different independent variables were selected: the first model

uses average yearly precipitations and average yearly temperature; and the second

one with dummy variables that take into account climate anomalies, droughts, and

precipitation anomalies. A question that might arise is why not measure floods

instead of rainfall anomalies. The answer is based on what was said in the previous

paragraphs of this section: floods tend to be more localized in specific areas, and

rainfall anomalies allow us to broaden the scope to the different countries of the

sample. Finally, the sum of nighttime light emissions is added to the model to

account for distance to markets, road density, and socio-economic development.

What follows is the description of how the independent variables are calculated in

the original dataset (Schon and Koren, 2022) and by personal elaboration:

1. Average NDVI: this variable is the average monthly NDVI value across all

0.08° pixels within a given cell. The values are obtained from the MODIStsp

R package;

2. Average temperature: is the average monthly registered temperature across

all 0.08° pixels within a given cell, from the CRU Time Series dataset (Harris

et al., 2020);
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3. Average precipitation: is the average monthly registered rainfall across all

0.08° pixels within a given cell, obtained from Harris et al. (2020);

4. Rainfall anomaly dummy: is the Z-scored deviation from the mean of the 30-

year rolling precipitation average for all 0.08° pixels within a given cell, from

Harris et al. (2020). The dummy variable is equal to 1 when the deviation

is positive.

5. Drought event dummy: is a dummy variable that takes a value equal to 1

when a drought event happened in the 2012-2018 period. The data about

climate extremes is obtained from the EM-DAT dataset.

All the variables that are not dichotomic are transformed in natural logarithm to

normalize the distribution. As explained before, the NDVI can take a negative

value up to -1, and the natural log of a negative number is undefined in the real

number set. In this case, the average NDVI values in the dataset are all positive,

so the transformation can be carried out.

The resulting models take the following form:

logPriceict = β1logNDV Iit+β2logC
◦
it+β3logPrecipit+β4logNLit+δc+γi+θt+εit

(3)

Where:

• Price: is the logged price of commodity c in market i at time t ;

• NDVI : are the logged average monthly NDVI values for market i at time t ;

• C◦
it: is the logged average monthly temperature for market i at time t ;
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• NL: is the logged sum of nighttime light emissions;

• δc: is a commodity-specific dummy variable for commodity c;

• γi: is a market-specific dummy variable;

• θt: is a monthly dummy;

• εit: is the error term for market i at time t.

The second model, instead, differs from the first one for the independent variables:

logPriceict = β1logNDV Iit+β2droughtit+β3RHit+β4logNLit+δc+γi+θt+εit (4)

Where drought is a dummy variable that takes a value equal to 1 if a drought

event happened in country i at time t ; and RH is a dummy variable that equals

1 if the registered anomaly in rainfall is higher than 0.

A note on fixed-effects dummy variables: the monthly dummies need to be

included in the model to account for time-fixed effects that are not observable in

the analysis, such as macroeconomic shocks. In this specific case, they also might

absorb the seasonal crop change. This should not be a concern since the potential

harvest failure due to a seasonal anomaly change (and thus climate variability)

is already explained by the environmental variables. The commodity dummy,

instead, is an addition that permits the elimination of the intrinsic commodity-

specific characteristics that could distort the estimation. Finally, market dummies

account for potential market shocks, specific consumption patterns, and geograph-

ical characteristics.
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4 Results and Discussion

The first model to be estimated is 3, that is, with precipitations, temperature,

and NDVI as climatic factors, and nighttime lights as the “economic variable”.

The table below shows the results of the first regression which was run on all the

categories of commodities. Overall, the regression model seems to explain the

VARIABLES COEFFICIENTS

Log NDVI -0.280∗∗∗

Log Precipitations -0.119∗∗∗

Log Temperature 0.159∗∗∗

Log Nighttime lights (sum) 0.00181

Constant 2.021∗∗∗

OBSERVATIONS 314’603

Table 3: The table shows the coefficients of the independent variables and their
significance level where ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

potential relationship between the variables. Indeed, The R2 of the model is equal

to 0.8557 (which represents the proportion of variance explained by the model)

and the Root Mean Square Error (RMSE) is equal to 0.47542 (which measures

the difference between the actual and predicted values). The table shows the

coefficients of the independent variables and their significance levels. All of them

are significant at p-value p < 0.001. This means that there exists a relationship

between climate variability and food prices. Since the model is in log-log form,

the interpretation is in percentage change: a 1% change in X causes a relative
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percentage change in Y (Benoit, 2011).

Following this framework, a 1% increase in average precipitation levels and

temperature registered causes a - 0.119 and + 0.159 percentage change respectively

in prices. This type of relationship is intuitive as increased rainfall levels can benefit

agricultural fields permitting crop development and harvest, thus increasing the

production of food products and reducing their relative price. On the contrary,

an increase in temperature levels might negatively affect yields as warmer periods

could let the harvest fail, which would cause an increase in price levels due to the

lack of supply. This suggests that farmers will try to recover the missing profits

from climate change by increasing prices. With regard to rainfall and temperature,

the results obtained are in line with the explored literature concerning the effects

of climate change on the economy. Going further with the results, it is interesting

to note the coefficient of NDVI: a 1% increase in average NDVI causes a - 0.

280 percentage change in prices. This inverse relationship is in line with (Brown

and Kshirsagar, 2015) and highlights its explanatory power relative to food prices.

Increasing NDVI values indicate higher levels of vegetation greenness which could

in turn outline the importance of crop wellbeing on agricultural productivity, and

then food security. Finally, we can observe that the coefficient of the nighttime

lights sum is not significant meaning that it does not exert any impact on price

levels.

The analysis went on by running model 4 with rainfall anomalies and drought

shock dummies as explanatory variables, with average NDVI as a control variable

and nighttime light sum as the economic variable. The regression model has a
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VARIABLES COEFFICIENTS

Log NDVI -0.334∗∗∗

Drought shocks 0.0340∗∗∗

Rainfall anomalies 0.00625∗∗∗

Log Nighttime lights (sum) 0.000877

Constant 1.726∗∗∗

OBSERVATIONS 314’603

Table 4: The table shows the coefficients of the independent variables and their
significance level where ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

R2 of 0.8555 and a RMSE of 0.47566 which is slightly higher than model 3. The

table shows that all the coefficients, except for nighttime lights, are significant

at p¡0.001. In this case, the coefficient of the average NDVI is higher than in

model 3. Specifically, a 1-point percentage increase in NDVI leads to a decrease

in prices of 0.334%. This increased coefficient might indicate the importance of

vegetation status under climatic stresses. The effect of rainfall anomalies on prices

is positive: the occurrence of a higher than zero precipitation anomaly event leads

to an increase in food prices by 0.00625%. Even if the marginal change is smaller

than in model 3, the existing relationship is negative, indicating that higher than

average precipitation levels could damage crop cultivation through soil inundations

(Chau et al., 2013). Moreover, heavy rains can also damage food reserves and lead

to Post Harvest Losses (PHL) due to poor storage technologies and mold formation

(with poor dry conditions) (Hell et al., 2000; Mwangi et al., 2017). The effect of

droughts on food prices is positive: the occurrence of a drought event leads to

an increase in prices of 0.0340%, as opposed to when there is no drought. The
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magnitude of the effect is lower than the one exerted by the marginal increase

in average temperature in the first model, but the sign of the coefficient is still

positive. In this case, the regression model is different because climate shocks are

expressed as dichotomic variables, thus potentially influencing the estimation of

the coefficients. In any case, the effects are positive for both climate shocks, which

highlights how droughts and potential floods negatively affect food prices.

To deepen the understanding of how climate change impacts food prices, both

regression models were tested on two types of crops which were divided in: 1)

most imported and 2) locally produced. This distinction is useful to assess the

sensitivity of the price of mostly imported crops on climate variability, and the

magnitude of such a relationship. Wheat, rice, and maize were chosen as the

most imported commodities since Africa is a historic importer of such products

(Johnson et al., 2022). With regard to the locally produced crops, cassava, onions,

tomatoes, sugar, sorghum, and groundnuts were chosen due to their high adoption

as main cash crops8.

Starting from the most imported crops, model 3 was estimated for the three

commodities. Table 5 shows the R2 and the RMSE for each crop. The R-squared

for the three models is high meaning that they explain at least 80% of the variance.

Moreover, the root MSE is low for each of the three crops.

8https://www.fao.org/family-farming/detail/en/c/1507024/
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Wheat Maize Rice

R-squared 0.8907 0.8505 0.9875

Root MSE 0.26647 0.32584 0.16918

Observations 11’075 71’949 35’671

Table 5: table showing R-squared, Root mean squared error and sample size for the
three most imported commodities.

Wheat Maize Rice

Log NDVI -0.0208 -0.658*** -0.0933**

Log Precipitations 0.0641* -0.149*** -0.0495***

Log Temperature -0.000888 0.243*** 0.0366***

Log Nighttime lights -0.0370*** 0.00619** -0.0153***

Table 6: regression table showing the coefficients with climate variability as independent
variables, for wheat, rice and maize (model 3).

Table 6 shows the specific results for wheat, rice, and maize. It can be seen

that the coefficients of the environmental variables for maize are higher than rice

and statistically significant at p < 0.001. The log of average NDVI is significant

for maize at p < 0.001 and for rice at p < 0.01, while not significant for wheat.

The signs of the coefficients are negative confirming the inverse relationship be-

tween vegetation greenness and food prices. Precisely, the coefficient of maize is

higher than the coefficient of rice, probably showing that maize is more sensitive

to changes in prices due to vegetation abundance than rice. The coefficients for

the log precipitations are all statistically significant for the three commodities:

at p < 0.05 for wheat, and p < 0.001 for both maize and rice. The sign of the

coefficient for wheat is positive, while negative for maize and rice highlighting the

45



beneficial effect of increasing marginal rainfall levels on crop cultivations. Concern-

ing log average temperatures, the coefficients for maize and rice are statistically

significant at p < 0.001 and of positive sign, while not significant for wheat. Over-

all, the type of relationships showed with the aggregate regression between climate

variability and food prices is confirmed in this case: an inverse-type relationship

between NDVI, rainfall, and prices, and a positive relationship between average

temperature and food prices. The nighttime lights coefficients are statistically sig-

nificant and of negative sign at p¡0.001 for wheat and rice, while of positive sign

and significant at p < 0.01 for maize. The negative sign potentially highlights the

positive effect of road infrastructure and market connection on food prices.

Model 4 with climate shocks variables was estimated to check for potential

differences between the type of relationship.

Wheat Maize Rice

Log NDVI 0.138 -0.706*** -0.0636

Droughts 0.0276* 0.0499*** 0.0450***

Rainfall anomalies -0.00712 0.00283 0.00875***

Log Nighttime lights -0.0392*** 0.00499* -0.0175***

Table 7: regression table showing the coefficients with climate shocks as independent
variables, for wheat, rice and maize (model 4).

In this case the average NDVI is statistically significant at p < 0.001 only for

maize, thus indicating that it is a good predictor only for that commodity. It

is interesting to notice that droughts exert a negative effect on food prices, con-

firming the potential relationship showed by the aggregate regression model. The

46



coefficients for drought shocks are all statistically significant: for maize and rice

at p < 0.001 and for wheat at p < 0.05. The sign is positive and the probable

impact of drought events on food prices is detrimental. Moving to rainfall anoma-

lies, the coefficient is positive and significant at p < 0.001 only for rice. Even

in this case the nighttime lights coefficients are statistically significant for all the

different crops: at p < 0.001 for wheat and rice, and at p < 0.05 for maize. An

interesting detail to observe is that in both regression models, the nighttime lights

coefficient is positive for maize while negative for wheat and rice. Moreover, an

important consideration has to be made: the observations for wheat are lower than

maize and rice. This potentially influence the estimation process since increasing

the sample size can increase the significance of the results, and thus reflect the

behavior of the whole category under analysis. Now model 3 is estimated for the

cash crops selected before. Table 8 shows the R2, the root MSE, and the number

of observations for each crop.

Groundnuts Onions Tomatoes Sorghum Sugar Cassava

R-squared 0.9665 0.5921 0.5676 0.8184 0.6731 0.9731

Root MSE 0.24566 0.24015 0.31095 0.18965 0.14703 0.28581

Observations 19’778 7’009 6’237 29’849 6’926 23’567

Table 8: table showing R-squared, root MSE and sample size for the selected cash
crops.

The R-squared for onions, tomatoes, and sugar is low showing that the regres-

sion model 3 explains only 59, 56, and 67 percent of the total variance respectively.

Instead, for groundnuts, sorghum, and cassava the R-squared is high. It is also
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evident that the crops with the highest R-squared are the ones with the highest

sample size. Overall, the RMSE is low for all the six commodities.

Moving to the regression, the table below shows the results of the estimation

of model 3. The log of average NDVI is significant p < 0.001 only for sugar and

Groundnuts Onions Tomatoes Sorghum Sugar Cassava

NDVI 0.184* -0.312 0.536 -0.0249 0.483*** -1.713***

Precipitations -0.00935 0.731*** -0.336 0.00711 -0.0404* -0.108**

Temperature 0.178*** -0.782*** -0.816*** 0.114*** 0.00199 -0.139**

Nighttime lights -0.00298 -0.0242* 0.0547* -0.181 -0.0631*** -0.00985*

Table 9: regression table showing the estimates of model 3 of main cash crops.

cassava, and at p < 0.05 for groundnuts. The sign of the coefficients for ground-

nuts and sugar, however, does not reflect the inverse relationship checked in the

previous paragraphs; it does so only for cassava. The log of average precipitations

is significant at p < 0.001 for onions, at p < 0.05 for sugar, and at p < 0.01 for

cassava. Even in this case, the inverse relationship found before is not present for

the most significant crop. The negative sign is present only for sugar and cassava.

Shifting to the log of average temperature, coefficients are significant at p < 0.001

for groundnuts, onions, tomatoes and sorghum, and at p < 0.01 for cassava. The

signs of the coefficients are positive for groundnuts and sorghum while negative for

onions, tomatoes, and cassava. As for nighttime lights, coefficients are significant

only for sugar at p < 0.001 and cassava at p < 0.05.

By utilizing model 4 we can see slight differences in coefficients compared to
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model 3. For example, the NDVI coefficient is significant at the same p-value

levels for the same three commodities of the table before, but the magnitude has

changed. As for rainfall anomalies, groundnuts and tomatoes coefficients are

Groundnuts Onions Tomatoes Sorghum Sugar Cassava

NDVI 0.239** -0.346 0.588 -0.0249 0.747*** -1.644***

Rainfall anom. 0.0189*** -0.00746 -0.816*** 0.00827** 0.00401 -0.0125**

Droughts 0.171*** -0.115*** -0.336 -0.0548*** 0.109*** -0.0256

Nighttime lights -0.00363 -0.0166 0.0547* 0.00234 -0.0702*** -0.00953*

Table 10: regression table showing the coefficients for the cash crops with climate
shocks as independent variables.

significant at p < 0.001, while for sorghum and cassava at p < 0.01. In this case,

the difference is that the onions and sugar coefficients are not significant. The

interpretation of the sign is also important: rainfall anomalies seem to benefit

tomatoes and cassava prices but exacerbate those of groundnuts and sorghum.

Moving to drought shocks, groundnuts, and sugar seem to be negatively affected

by water scarcity, with positive coefficients significant at p < 0.001. Instead,

onions and sorghum seem to react oppositely with negative values with p < 0.001.

Finally, nighttime light coefficients are significant at p < 0.001 for sugar, and for

cassava at p < 0.05.

Looking at the results of both most imported commodities and locally produced

crops, it can be noticed that temperature (intended also as drought shock) is

a good predictor of retail food prices having most of the coefficient significant.

Precipitation levels also are a good predictor of climate stress on wheat, rice, and
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maize. Rainfall anomalies, on the contrary, seem to be significant mostly on locally

produced crops, thus highlighting the probable lower reliance on imports (Table 9).

Concerning the coefficients’ sign of both models 3 and 4, this discrepancy in results

might hide the complexity of explaining single commodity prices due to good

farming practices and the capability of the specific crop to adapt to climate stresses.

For example, the coefficient for tomatoes when climate shocks are included is

negative, which intuitively can be interpreted as “a 1% increase in temperature

leads to a 0.816% decrease in its price”. It has to be considered that different

tomato genotypes adapt in different ways to heat stress, highlighting, thus, the

probable presence of diversification in crop cultivars among farmers (Kugblenu

et al., 2013). Also, cassava is highly adopted in sub-Saharan Africa as a strategic

crop due to its high adaptability to marginal environments and its capability to

produce well in arid and semi-arid temperatures (Brown et al., 2016; Okogbenin

et al., 2013). This essential attribute could partially explain the negative, and

significant, cassava coefficient under marginal increasing temperatures.
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5 Conclusions

This work aimed to answer the question of how climate change impacts local food

prices by using a regression fixed effect model with dummy variables to explicitly

capture the unobserved time-fixed effects. The results yielded by the econometric

model show an inverse relationship between marginally increasing average precip-

itations, average NDVI, and retail food prices, suggesting that water availability

benefits crop yields and plant status. While marginally increasing temperature

levels exacerbate prices by increasing soil aridity, thus reducing crop yields and

vegetation greenness.

A deepening of the effect of climate extremes on food prices was made by

considering the happening of drought events and rainfall anomalies in a second re-

gression model. The outcomes confirm the negative effect of environmental shocks

and the positive effect of vegetation on retail food prices. To have a broader, and

more specific, understanding of how environmental variability affects food prices,

mostly imported commodities and locally produced crops were considered for the

analysis. The estimation of models 3 and 4 on the two categories of commodi-

ties produced mixed results: for the highly imported commodities temperature is

found to be most significant in terms of negative impacts. For locally produced

commodities, instead, the results underline the difficulty of assessing the influence

of climate change.

An important detail that needs to be considered is that highly imported com-

modities are richer in terms of observations than locally produced crops, which

has an impact on regression outcomes. Missing information, indeed, is one of the

limitations of the current work. Further, aggregating different commodities into
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a single category has the shortcoming of generalizing the results for different crop

types, which might react differently to climate change.

The previously stated limitations lead us to the first consideration: it is im-

portant for policymaking and risk assessment to gather more data in order to

produce information and make precise and reliable inferences. In the context of

this research, data for some commodities was missing for consecutive months, even

years. Also, understanding why observations are missing could be a step forward

in causal inference analysis: for example, if a market does not have observation

because of displacement due to climate change or ongoing conflicts, research out-

puts can take different turns in causality assessment. Indeed, the current work

does not aim at offering certainties and stating causality about climate change

and food prices, but rather to discover further uncertainties to be explored that

could develop into interesting insights and new research questions.

The uncertainty with which I am speaking concerns the complexity of the

climate change phenomena, and more broadly, the complexity of nature itself.

As humans, we still know little about the interaction between the environment

as a whole (including us) and climate extremes, because the time we are living

in is unique. In the context of this work, it is important to study how crops

react to environmental variability in order to develop adaptation and mitigation

innovations (climate change resistant crops or new farming technologies), and thus

build a more resilient agricultural sector. Precision farming technologies as an

alternative to satellite-based imagery, for example, can serve as a useful tool for

agronomists to precisely map fertility areas, thus bypassing NDVI pitfalls (Ghosh

et al., 2023). As showed in the introduction, weather extremes are happening at a

highly frequent rate, especially in developing countries. Therefore it is crucial for
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a country’s economy to adapt the size of financial resources destined for disaster

reconstruction in relation to the level of risks of such events (Hallegatte and Dumas,

2009).

Starting from the study’s limitations, possible developments of this work are

different. Given that the widest climate anomalies are concentrated during ENSO

years (2005 and 2015), to better understand the impact of this disrupting climatic

event a synthetic control method could be utilized on affected countries. In this

case, a Difference-in-Difference model could also be used. However, environmental

shocks are increasingly occurring making the impact of a single event difficult to

disentangle from the previous one. Thus, the synthetic control method would

permit to build a fictional country where environmental disasters are not present,

enhancing comparability. Moreover, a deeper knowledge of droughts and floods’

impacts on food prices could be achieved by considering market integration, which

would allow researchers to determine, in spatial terms, how far extreme event

consequences are transmitted.
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